SciELO - Scientific Electronic Library Online

 
 número31PREDICCIÓN DE DESGASTE ABRASIVO Y DUREZA SUPERFICIAL DE PARTES IMPRESAS POR TECNOLOGÍA SLA índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Ingenius. Revista de Ciencia y Tecnología

versão On-line ISSN 1390-860Xversão impressa ISSN 1390-650X

Resumo

BARRIONUEVO, Germán Omar; LA FE-PERDOMO, Iván; CACERES-BRITO, Esteban  e  NAVAS-PINTO, Wilson. TENSILE/COMPRESSIVE RESPONSE OF 316L STAINLESS STEEL FABRICATED BY ADDITIVE MANUFACTURING. Ingenius [online]. 2024, n.31, pp.9-18. ISSN 1390-860X.  https://doi.org/10.17163/ings.n31.2024.01.

Additive manufacturing has evolved from a rapid prototyping technology to a technology with the ability to produce highly complex parts with superior mechanical properties than those obtained conventionally. The processing of metallic powders by means of a laser makes it possible to process any type of alloy and even metal matrix composites. The present work analyzes the tensile and compressive response of 316L stainless steel processed by laser-based powder bed fusion. The resulting microstructure was evaluated by optical microscopy. Regarding the mechanical properties, the yield strength, ultimate tensile strength, percentage of elongation before breakage, compressive strength and microhardness were determined. The results show that the microstructure is constituted by stacked micro molten pools, within which cellular sub-grains are formed due to the high thermal gradient and solidification rate. The compressive strength (1511.88 ± 9.22 MPa) is higher than the tensile strength (634.80 ± 11.62 MPa). This difference is mainly associated with strain hardening and the presence of residual stresses. The initial microhardness was 206.24 ± 11.96 HV; after the compression test, the hardness increased by 23%.

Palavras-chave : Additive manufacturing; Laser powder bed fusion; Mechanical properties; Stainless steel; Strain hardening.

        · resumo em Espanhol     · texto em Espanhol     · Espanhol ( pdf )