SciELO - Scientific Electronic Library Online

 
 número31RESPUESTA A LA TENSIÓN/COMPRESIÓN DEL ACERO INOXIDABLE 316L FABRICADO POR MANUFACTURA ADITIVAEvaluación de un modelo de optimización no lineal para el despacho económico de microrredes aisladas índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Ingenius. Revista de Ciencia y Tecnología

versión On-line ISSN 1390-860Xversión impresa ISSN 1390-650X

Resumen

MUNOZ-VALVERDE, P. et al. PREDICTION OF ABRASIVE WEAR AND SURFACE HARDNESS OF PRINTED PARTS BY SLA TECHNOLOGY. Ingenius [online]. 2024, n.31, pp.19-31. ISSN 1390-860X.  https://doi.org/10.17163/ings.n31.2024.02.

In the present study, a prediction of hardness deterioration and abrasive wear was performed through a neural network using artificial intelligence on a material printed in SLA. This article aims to predict the mechanical properties, wear resistance and surface hardness of parts manufactured by SLA stereolithography printing. A full factorial DOE was used to associate the peculiar parameters (print orientation, cure time, layer height) to perform experiments. The mechanical properties were evaluated according to ASTM regulations, with the objective of obtaining feeding data and validation of the predictions of the Taber Wear Index and hardness using an artificial neural network. The experimental results are in good agreement with the measured data with satisfactory prediction errors with a mean square error (MSE) of 0.01 corresponding to abrasive wear using the clear resin and a mean absolute error (MSE) of 0.09 with an R2 of 0.756, the prediction with the neural network with a mean square error (MSE) of 2.47 corresponding to abrasive wear using the tough resin and a mean absolute error (MSE) of 14.3 with an R2 of 0.97. It was shown that the accuracy of the prediction is reasonable, and the network has the potential to be improved if the experimental database for training the network could be expanded. Therefore, wear and hardness mechanical properties can be predicted appropriately with an ANN.

Palabras clave : 3D printing; SLA Stereolithography; Taber wear index; surface hardness; artificial neural network; light-curing resins.

        · resumen en Español     · texto en Español     · Español ( pdf )