
Scientific Paper / Artículo Científico

https://doi.org/10.17163/ings.n31.2024.02
pISSN: 1390-650X / eISSN: 1390-860X

Prediction of abrasive wear and surface
hardness of printed parts by SLA technology

Predicción de desgaste abrasivo y dureza
superficial de partes impresas por tecnología

SLA
P. Muñoz-Valverde1 ID , O. Villena-López2 ID ,

L. Mayorga-Ases2,∗ ID , C. Pérez-Salinas3 ID , D. Moya3 ID

Received: 15-05-2023, Received after review: 11-07-2023, Accepted: 19-10-2023, Published: 01-01-2024

1Departamento de Ciencias Exactas, Universidad de las Fuerzas Armadas ESPE, Ecuador.
2,∗Laboratorio de Materiales y Manufactura, Universidad Técnica de Ambato, Ecuador.

Corresponding author ✉: la.mayorga@uta.edu.ec.
3Grupo de Investigación e Innovación en Ingeniería Mecánica GI3M-FICM, Universidad Técnica de Ambato, Ecuador.

Suggested citation: Muñoz, P.; Villena, O.; Mayorga, L. ; Pérez, C. and Moya, D. “Prediction of abrasive wear and
surface hardness of printed parts by SLA technology,” Ingenius, Revista de Ciencia y Tecnología, N.◦ 31, pp. 19-31,
2024, doi: https://doi.org/10.17163/ings.n31.2024.02.

Abstract Resumen
In the present study, a prediction of hardness deteri-
oration and abrasive wear was performed through a
neural network using artificial intelligence on a mate-
rial printed in SLA. This article aims to predict the
mechanical properties, wear resistance and surface
hardness of parts manufactured by SLA stereolithog-
raphy printing. A full factorial DOE was used to
associate the peculiar parameters (print orientation,
cure time, layer height) to perform experiments. The
mechanical properties were evaluated according to
ASTM regulations, with the objective of obtaining
feeding data and validation of the predictions of the
Taber Wear Index and hardness using an artificial
neural network. The experimental results are in good
agreement with the measured data with satisfactory
prediction errors with a mean square error (MSE) of
0.01 corresponding to abrasive wear using the clear
resin and a mean absolute error (MSE) of 0.09 with
an R2 of 0.756, the prediction with the neural network
with a mean square error (MSE) of 2.47 correspond-
ing to abrasive wear using the tough resin and a
mean absolute error (MSE) of 14.3 with an R2 of
0.97. It was shown that the accuracy of the predic-
tion is reasonable, and the network has the potential
to be improved if the experimental database for train-
ing the network could be expanded. Therefore, wear
and hardness mechanical properties can be predicted
appropriately with an ANN.

En el presente estudio se realizó una predicción del
deterioro de la dureza y el desgaste abrasivo a través
de una red neuronal utilizando inteligencia artificial
sobre un material impreso en SLA. Esta investigación
tiene como objetivo predecir las propiedades mecáni-
cas de resistencia al desgaste y dureza superficial
de piezas fabricadas mediante impresión por estere-
olitografía (SLA). Para realizar los experimentos se
utilizó un diseño factorial de dos niveles o DOE facto-
rial completo y así asociar los parámetros peculiares
(orientación de impresión, tiempo de curado, altura
de la capa). Las propiedades mecánicas fueron eval-
uadas según normativas ASTM, con el objetivo de
obtener datos de alimentación y validación de las
predicciones del índice de desgaste Taber y la dureza
empleando una red neuronal artificial. Los resulta-
dos experimentales concuerdan con los datos medidos
con errores de predicción satisfactorios con un error
cuadrático medio (MSE) de 0,01 correspondiente al
desgaste abrasivo utilizando la resina transparente y
un error absoluto medio (MSE) de 0,09 con un R2
de 0,76. La predicción con la red neuronal tiene un
error cuadrático medio (MSE) de 2.47 perteneciente
al desgaste abrasivo utilizando la resina resistente y
un error absoluto medio (MSE) de 14,3 con un R2 de
0,97. Se demostró que la precisión de la predicción es
razonable, y que la red tiene potencial para mejorar
si se pudiera ampliar la base de datos experimental
para entrenar la red. Por lo tanto, las propiedades
mecánicas de desgaste y dureza se pueden predecir,
adecuadamente, con una RNA.
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Taber wear index, surface hardness, artificial neu-
ral network, light-curing resins
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1. Introduction

In recent years, additive manufacturing techniques
have experienced accelerated progress in the develop-
ment of prototyping and manufacturing in different
fields [1–3]. Polymer printing has played a key role
in this progress because its technology is widely avail-
able to developers. The new generation of printers has
greatly boosted innovation, reducing the time and cost
of product development. In addition, the use of addi-
tive manufacturing techniques in industry has become
a field of great interest due to their high performance
and ease of fabrication of complex three-dimensional
geometrie.

The relatively low cost of commercially available
3D printers of different types allows the use of a wide
range of materials with varying quality, precision, and
resolution. Among the most common technologies,
SLA (stereolithography) stands out, offering several
advantages in precision applications, such as easy-to-
use interfaces, resolution, and relatively fast printing
speed [4–6].

The properties of SLA printed parts are intimately
derived from the SLA process and post-process. In
recent years, the mechanical properties obtained from
SLA printed parts have been studied in the different
light-curing resins available in the market. Even the
improvement of the resins has been studied by evalu-
ating the light curing process [7–9]. Properties such as
tensile strength, tensile modulus, compressive strength
were usually studied [10–12]. However, information on
hardness and wear properties is scarce.

The surface hardness of polymeric materials is an
important factor in their resistance to abrasive and
adhesive wear. A polymeric material with a higher
surface hardness will have a higher wear resistance, as
it will be less prone to deformation, adhesion and ma-
terial transfer during contact with abrasive or adhesive
surfaces [13]. However, it is also important to consider
other factors, such as the chemical structure of the
polymer and its resistance to sliding and deformation,
for a complete understanding of its tribological behav-
ior [14]. SLA printed parts are increasingly used for
engineering applications, where the wear phenomenon
is an important aspect to consider. As hardness is a
property that is related to the wear process, its in-
clusion in the analysis is also necessary. Studying the
correlation between wear, hardness and SLA printing
process parameters is important to design suitable
compounds to meet various special requirements.

The prediction of mechanical properties is funda-
mental in the design of parts and components to ensure
their proper functioning. The use of artificial neural
networks (ANNs) to predict mechanical properties of
materials has proven to be a very useful and powerful
tool in engineering in different fields of manufactur-
ing and specifically in wear-related issues [10], [15, 16].

ANNs can learn complex and nonlinear patterns from
large data sets and therefore can accurately predict
the mechanical properties of materials from limited in-
formation. This is especially useful when experimental
data on the mechanical properties of a particular mate-
rial is not available or when it is desired to reduce the
time and costs associated with traditional mechanical
testing. In summary, using ANN to predict mechanical
properties is a valuable tool that can help engineers
design more efficient and safer parts and components.

Neural network (NN) approaches are widely used
methodologies reported in the literature among vari-
ous machine learning techniques [17]. The ability of
artificial NN to capture complex relationships between
input and output data is valuable in manufacturing
processes where it is difficult and expensive to obtain
large experimental data for process modeling. In addi-
tion, NN models show an improvement in experimental
error from 40% to 70% [18].

This paper studies the prediction of abrasion wear
and hardness obtained from experimental tests on
parts printed with thermosetting resins (tough and
transparent resins) using SLA. The structure of this
paper is as follows. First, the compilation on the tech-
nological properties of printed resins and the basics of
printing is presented. Secondly, the analysis of hard-
ness resistance and wear resistance of 3D printing by
SLA stereolithography is provided by experiments. Fi-
nally, the abrasive wear during the 3D printing process
is estimated using an artificial neural network based
on the experimental data.

2. Materials and Methods

The presentation of this section is (1) the materials
and their characteristics, (2) the experimental design,
(3) the process of obtaining the printed material, (4)
wear and hardness analysis of the tested items and
(5) ANN prediction, as shown in the flowchart in
Figure 1.

2.1. Materials

Two types of resins were used for property evaluation,
Clear and Tough from FormlabsT M . brand. Clear
FLGPCL04 resin is used to print materials with high
resolution and a smooth and soft finish [19]. Whereas
Tough FLTOTL05 resin is used for solid prototyping
because it balances strength and functionality. Both
the manufacturer and printing service companies rec-
ommend its use in elements that are subjected to short
periods of stress or fatigue [20], e.g., assemblies, press-
type configurations and robust prototypes require the
use of the aforementioned resin.

Table 1 summarizes the mechanical behavior of the
material before and after curing, considering a treat-
ment time of 60 min 60 °C, with a UV radiation of
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1.25 mW/cm2 and a wavelength of 405 nm for each
type of resin. Nine properties are provided for Clear
and Tough resin, the table is divided into three cate-

gories, cured, uncured and the testing method used to
determine each property.

Figure 1. Flow chart of the applied methodology.

Table 1. Mechanical properties of clear and tough resin [20,21].

PARAMETERS CLEAR RESIN TOUGH RESIN
Uncured Post - Cured Method Uncured Post - Cured Method

Ultimate Tensile Strength 38 MPa 65 MPa ASTM D 638 - 10 34.1 MPa 55.7 MPa ASTM D 638 - 14
Tensile Modulus 1.6 GPa 2.8 GPa ASTM D 638 - 10 1.7 GPa 2.7 GPa ASTM D 638 - 14

Flexural Stength at 5% Strain 42% 24% ASTM D 638 - 14
Elongation at Failure 12% 6.2 % ASTM D 638 - 10 20.8 MPa 60.6 MPa ASTM C 790 - 15

Flexural Modulus 1.25 GPa 2.2 GPa ASTM D 790 - 10 0.6 GPa 1.6 GPa ASTM C 790 - 15
Notched IZOD 16 J/m 25 J/m ASTM D 256 - 10 32.6 J/m 38 J/m ASTM D 256 - 10

Heat Deflection Temperature (64 psi) 42.7 °C 58.4 °C ASTM D 648 - 07 32.8 °C 45.9 °C ASTM D 648 - 16
Heat Deflection Temperature (66 psi) 49.7 °C 73.1 °C ASTM D 648 - 07 40.4 °C 48.5 °C ASTM D 648 - 16

Thermal Expansion (23 - 50 °C) 1597 µm/m/°C 119.4 µm/m/°C ASTM E 831 - 13

The considered mechanical properties are ultimate
tensile strength, tensile modulus, flexural strength
at 5% strain, elongation at failure, flexural modulus,
notched IZOD, thermal deflection temperature at 64
Psi and 66 Psi and thermal expansion. The evaluation
of the technological properties corresponds to the fluid
absorption capabilities of the 3D printed parts, such as
water, acetone or diesel. Fluid absorption is an impor-
tant property of materials for medical devices due to
their possible use as containers, flow conductors, etc.

Table 2 shows other properties such as the per-
centage weight gain from a 1x1x1 cm cube, the data
correspond to the two resins in 24 hours of immersion
in different solvents.

The tensile behaviour of the two resins considering
different curing times is shown in Figure 2. Due to
their good tensile behaviour, both resins can be used
for printing mechanical parts. For example, the Tough
resin is used to print gears for RC prototypes, [22].
On the other hand, Clear resin, thanks to its high
surface quality, offers the possibility of being used on
visually exposed elements. In addition, replacement on

any device is easier, as the affected elements can be
replaced in a short time with a new one thanks to this
printing technology.

Table 2. Percentage weight gain of the two resins in
24 hours of immersion in different fluids of a 1x1x1 cm
cube, [20, 21].

SOLVENT
CLEAR TOUGH

Gain (%)
Strong Acid (HCI) Distores Distored
Xylene < 1 < 1
Water < 1 1.6
Sodium hydroxide (0.0025% - PH = 10) < 1 1.5
Salt Water (3.5%) < 1 1.5
Mineral Oil (Heavy) < 1 < 1
Mineral Oil (Ligth) < 1 < 1
Isooctane < 1 < 1
Hydrogen Peroxide (3%) < 1 2.1
Acetic Acid (5%) < 1 2.8
Acetone Sample cracked Sample cracked
Isopropyl Acetate < 1 2.1
Bleanch (5% aprox) < 1 1.7
Butyl Acetane < 1 1.6
Diesel < 1 < 1
Diethyl glicol monomethyl ether 1.7 6.6
Hydrolic Oil < 1 < 1
Skydrol 5 1 1.2
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Figure 2. Young modulus vs post cured time for the Clear
and Tough Resin

2.2. Experimental design

The orthogonal matrix, in the context of a statistical
study, is a tool used to study and analyse all varia-
bles independently and simultaneously. It allows the
analysis of one variable to be unaffected by the other
variables in the study, making it easier to study each
variable separately and understand its individual im-
pact. This is due to the independence of data in the
study.

By analysing variables independently, the possibil-
ity of introducing bias or confounding between them
is reduced. This helps to obtain more reliable and ac-
curate results because each variable is examined in
isolation and potential sources of error can be better
identified and controlled.

Consequently, an orthogonal matrix experimental
design was applied in which two quantitative variables
(curing time and impression orientation) and a quali-
tative variable corresponding to resin type were used
with three levels as presented in Table 3.

Table 3. Experimental design

FACTORS UNIT
LEVEL 1 LEVEL 2 LEVEL 3
T C T C T C

Curing time [min] 0 0 15 60 30 120
Print orientation [°] 0 45 -

Resin type - Tough (T) Clear (C) -

In this analysis, a distribution of the data from a
full factorial model was used. The number of experi-
mental runs was set to 5. 100 combinations of experi-
mental data were obtained. The data were cleaned for
the existence of null values, especially for the Tough
resin with 15 and 30 minutes curing times and the
Clear resin with 60 and 120 minutes curing times.

2.3. Process of obtaining printed material

Figure 3 shows a SIPOC diagram of the process car-
ried out for the printing of the specimens with the
material proposed for the analysis. The graph details
the steps (1) to (5) that correspond to the inputs and
prototyping, while step (6) details the tests that were
carried out for the analysis and data collection that
fed the neural network.

Initially, the resins are in a liquid state, stored
and supplied from cartridges (1). The specimens were
then modelled using design software (2). For printing,
the parameters specified by the manufacturer were
followed [23] and the variables described in the experi-
mental design were set (3).

The fabrication of each specimen from the SLA
process was carried out by means of the printing phase
in the Form 2 SLA machine considering the experimen-
tal design guidelines, the washing phase was carried
out in the Form Wash machine with isopropyl alcohol
solvent for a period of 10 to 20 minutes (4) and finally,
the curing was carried out in the Form Cure machine.

For the curing stage of the specimens, a time span
of 0 to 30 minutes was taken into consideration for
the Clear resin and 0 to 120 minutes for the Tough
resin as specified in Table 3 (5). An estimate of the
time that can be spent per layer can be obtained from
Equation (1). The forming time (Tc) depends on the
area of the layer to be formed (Ac), the speed (v) and
the diameter (D) of the beam, plus the repositioning
time for layer materialisation (Tr). The sum of the
formation time of each layer gives the total processing
time, [24].

Tc = Ac

vD
+ Tr (1)

In general terms, the SLA 3D printing process can
be mathematically defined by relationships such as the
depth of cure, the width of the cure line and the laser
exposure at any point.

The depth of cure ratio (Equation (2)) is related by
the laser penetration depth (Dp), the exposure energy
at the resin surface (Eo) and the minimum energy to
gel the resin (Ec) [24]. The width of the cured line
(Lw) is expressed by Equation (3). In this relation, D
is equivalent to the diameter of the laser in use in the
printing machine.

Cd = Dp Ln

(
Eo

Ec

)
(2)

Lw = D

√
Cd

2Dp
(3)
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Figure 3. Stages in obtaining printed material for analysis

Considering that the laser has motions in all 3 axes
(X - Y - Z), the laser exposure at any point (E (x, y,
z)) is determined by Equation (4). The point (x, y)
represents the distance from the centre to the beam,
(z) the depth at which it is located, (Pl) is equal to the
laser power, the Gaussian mean width (Wo) Vs the
laser scanning speed and (Dp) the laser penetration
depth, [25].

E(x, y, z) =
√

2
π

P l

WoV s
e− 2y2

Wo2 e− z

Dp
(4)

Isotropy is a critical characteristic that relates to
the parameters defined by Equations 1-4. Isotropy is
one of the consequences of post-curing, which strength-
ens the bonds by forming covalent bonds. At the micro
level, there is no marked difference between molecules
arranged in the X - Y - Z planes. This makes its me-
chanical performance predictable and therefore better
than other types of 3D printing. On the other hand,
impermeability is another characteristic that outper-
forms the material after curing. This distinctive feature
is one of the reasons why this type of printing is often
used when dealing with fluids.

2.4. Wear and hardness analysis of tested items

Following the indications set out in the ISO 9352 stan-
dard. A load of 1000 grams and 1000 cycles were
applied at a speed of 72 rpm. The type of grinding
wheel used was intermediate grade H22. The reported
result is the Taber Wear Index (TWI), Equation (5),
where A is the weight of the sample before the test,
B is the weight of the sample after the test and C is
equal to the number of cycles used in the test.

TWI = [(A − B)1000]
C

(5)

Each test specimen was tested, and the results are
expressed in terms of a Shore D hardness unit, which
represents the resistance of the material to penetration
by the test needle. On the Shore D scale, lower hard-
ness values correspond to softer materials and higher
values correspond to harder materials. The Shore D
scale is particularly suitable for rigid materials, with a
typical hardness range of 20 to 90 Shore D.

2.5. Artificial neural network (ANN) analysis
methods

A neural network is a technique inspired by the biolog-
ical nervous system, which aims to replicate the way
humans learn to solve a wide variety of complex scien-
tific problems. Neural networks consist of several layers
of neurons connected with synaptic weights to simulate
the human brain. A simplified network consists of an
input layer with a number of neurons depending on
the input variables (3 in this study), followed by one
or more hidden layers that transform those variables
for final use in the output layer [26,27].

Overfitting is a problem related to neural network
training. According to research [28–30], determine that
too few neurons lead to underfitting, while too many
neurons can contribute to overfitting.

Figure 4 shows the neural scheme used, where W
is the synaptic weight from each neuron to another
neuron in the next layer.
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Figure 4. Neural network architecture with three layers
implemented from the input to the output layer.

The multilayer feed forward network architecture
used in this study consists of three neurons for the
input layer, which are ordered according to the number
of input variables. One neuron is in the output layer
(abrasive wear) and two are hidden layers with ninety-
six neurons each. The selected number of neurons in
the hidden layer is determined by a trial and error
procedure. To decrease the difficulty of training and
to balance the importance of each parameter during
the training process, the experimental database was
normalised between the values 0 and 1.

The scaling of the input and output variables in
the interval is determined by the ratio of the differ-
ence of the input and output variables. The scaling
of the input and output variables in the interval is
determined by the ratio of the difference of the input
data to the mean and standard deviation (Equation
(6)), where x is a data point, µ is the mean and σ is
the standard deviation.

z = x − µ

σ
(6)

The output of each neuron of the hidden and output
layers is given by the function ReLU. This function rep-
resents the activation fusion (Equation (7)). Adam’s
optimisation algorithm was used together with the
backpropagation training algorithm [31] to train the
multilayer neural network and calculate the gradient
required for weight adjustment.

σ(x) =
{

x si x ≥ 0;
x si x < 0; (7)

The training phase of the ANN determines the con-
nection weights needed to give the desired response.
The first step is to assign random weight values to all
links between neurons. Next, the parameter values of
the k-th experiment from the training data list are
passed through the network. The estimated value is
compared with the desired value using the functions:
mean square error (MSE) and mean absolute error
(MAE).

The different weights connecting the elements in
the neural network are adjusted and approached to
the target output value. Equation (8) represents the
update of the synaptic weights, based on the calculated
error in each neuron.

w′ji(n) = wji(n) + ∆wji(n) (8)

Where w′ji(n) represent the adjusted weights,
wji(n) are the previous weights and ∆wji(n) is the
synaptic weight correction. After updating all weights
according to the training error, an epoch (n) is com-
pleted. An epoch is when all training trials (60 for this
study) are evaluated. If the MSE is not lower than a
specific target, the process is repeated by updating the
weights and increasing the number of epochs required
until the target is reached.

3. Results and discussion

The results are reported in two stages, (1) experimental
analysis of influential factors on the output variables
(Taber wear index and hardness) and (2) wear predic-
tion by neural network.

3.1. Experimental analysis of output variables

Figure 5 details the specimens subjected to the abra-
sion test where the topology of the specimens has
undergone a noticeable change. The main evidence is
shown in the quality of the track left by the grinding
wheel. This is consistent with the results presented,
which indicate that there is a 70% difference in mass
loss between the white (Clear Resin) and blue (Tough
Resin) specimens. The latter being the most resistant
to abrasion.

Figure 5. Tested specimens - wear resistance.
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On the other hand, regarding the hardness test,
it can be said that the hardness scale of the resins
increases as the curing time increases. In other words,
there is a directly proportional relationship. The Clear
resin presents its maximum peak of Shore D hardness
at 15 minutes of curing with an average of 88.4, being

the highest among the two resins used in the study.
The Tough resin presents its maximum peak at 60
minutes of cure with an average hardness scale of 78.6.

Table 4 shows the distribution of the data from a
full factorial model.

Table 4. Training data. Full Factorial model with 5 experimental runs

N° CURED ORIENTATION ABRASION CLEAR TOUGH N° CURED ORIENTATION ABRASION CLEAR TOUGH
[min] [°] RESIN RESIN [min] [°] RESIN RESIN

1 30 0 0.73 1.00 0.00 31 60 45 0.06 0.00 1.00
2 30 45 0.43 1.00 0.00 32 60 45 0.08 0.00 1.00
3 120 45 0.11 0.00 1.00 33 0 45 0.06 1.00 0.00
4 15 0 0.69 1.00 0.00 34 60 45 0.12 0.00 1.00
5 120 0 0.57 0.00 1.00 35 0 45 0.64 1.00 0.00
6 60 0 0.36 0.00 1.00 36 15 0 0.45 1.00 0.00
7 0 45 0.64 1.00 0.00 37 30 0 0.52 1.00 0.00
8 0 0 11.80 1.00 0.00 38 0 0 11.80 1.00 0.00
9 30 0 0.52 1.00 0.00 39 30 45 0.31 1.00 0.00
10 0 0 0.74 0.00 1.00 40 0 45 0.31 0.00 1.00
11 0 0 0.88 0.00 1.00 41 0 0 0.64 0.00 1.00
12 120 45 0.06 0.00 1.00 42 30 45 0.36 1.00 0.00
13 0 0 0.90 0.00 1.00 43 120 0 0.48 0.00 1.00
14 15 45 0.33 1.00 0.00 44 15 45 0.41 1.00 0.00
15 60 0 0.43 0.00 1.00 45 15 45 0.45 1.00 0.00
16 30 45 0.50 1.00 0.00 46 0 45 0.27 0.00 1.00
17 0 0 11.80 1.00 0.00 47 15 0 0.43 1.00 0.00
18 120 45 0.10 0.00 1.00 48 30 0 0.70 1.00 0.00
19 0 45 0.64 1.00 0.00 49 15 0 0.96 1.00 0.00
20 0 45 0.29 0.00 1.00 50 0 0 11.80 1.00 0.00
21 60 45 0.14 0.00 1.00 51 120 0 0.41 0.00 1.00
22 120 45 0.08 0.00 1.00 52 120 45 0.09 0.00 1.00
23 15 45 0.49 1.00 0.00 53 0 0 0.72 0.00 1.00
24 120 0 0.48 0.00 1.00 54 60 45 0.15 0.00 1.00
25 30 0 0.47 1.00 0.00 55 0 45 0.18 0.00 1.00
26 15 45 0.49 1.00 0.00 56 0 45 0.21 0.00 1.00
27 60 0 0.37 0.00 1.00 57 60 0 0.50 0.00 1.00
28 0 45 0.64 1.00 0.00 58 30 45 0.45 1.00 0.00
29 15 0 0.43 1.00 0.00 59 0 0 11.80 1.00 0.00
30 60 0 0.49 0.00 1.00 60 120 0 0.33 0.00 1.00

Figure 6 shows the experimental results for the
main effects of hardness and wear rate at 5% signifi-
cance level. For hardness (Figure 6a), it is observed
that both resin type and curing time are incident varia-
bles (p-value < 0.01 for the two factors in the ANOVA
analysis). Impression orientation is not incident (p-

value > 0.01). On the other hand, figure 6b shows that
all factors (resin type, curing time and impression ori-
entation) are incident on abrasion resistance (p-value
< 0.01) for all factors. For both response variables, the
resin with the highest performance is Clear resin.

(a) (b)

Figure 6. Main effects plot. a) Hardness, b) Abrasion resistance - Tabber test
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Figure 7 shows the hardness behaviour of the two
resins (Clear, Tough Resin) as a function of curing
time; (figure 7a), corresponding to the Clear resin,
shows a higher hardness. However, the highest values
are in the range of 15 to 30 minutes. On the other
hand, a similar behaviour is observed in the Tough
resin (figure 7b), where it is evident that the longer
the curing time, the higher the hardness. To achieve
these results, a curing range of 60 minutes is necessary.
It is also observed that the recommended curing time
should not be exceeded because it does not improve

the hardness of the material.
Figure 8 shows the abrasion results. The two resins

have a distinct pattern of behaviour. As they are not
cured, they do not show good stability (low strength).
The abrasion resistance increases when the two resins
are cured for the first time. Regardless of the time, it is
observed that the change is noticeable between 0 min
and 5 min (Resin Clear 8a). Thereafter, as shown by
the tensile strength results, the values do not show no-
ticeable changes. In other words, the longer the curing
time, the higher the abrasion resistance.

(a) (b)

Figure 7. Experimental results. (a) Clear Resin: Hardness vs Orientation vs Post – Cured (b) Tough Resin. Hardness
vs Post Cured time Vs Orientation.

(a) (b)

Figure 8. Experimental results. (a) Clear Resin: Wear resistance vs Orientation vs Post – Cured (b) Tough Resin.
Wear resistance vs Post Cured time Vs Orientation.

3.2. Abrasive wear and hardness prediction by
artificial neural network

A neural model was developed to estimate the Taber
wear rate (TDI) and hardness based on different combi-
nations of stereolithographic 3D printing. The database
was obtained through laboratory tests. The experimen-
tal data used for the training stage was divided by
cross-validation into 80% for training and 20% for
validation. It was developed with a feed - forward
and back propagation neural scheme on a total of 60
experimental data.

The best performing model was the 5-96-96-1 ar-
chitecture. The activation function ReLu was used for
both the hidden layers and the output layer. Figure 9
shows the relationship between the values obtained by
neural training and the values obtained experimentally.

The evolution of the MAE and MSE with the
epochs for the designed neural network is presented
in Figure 10, where the convergence of the results is
observed. The MAE at the end of the abrasive wear
training procedure resulted to be 0.09 using Clear resin
and an MSE value of 0.01. To measure the accuracy of
the ANN, the correlation coefficient (R2) between the
results and the targets was calculated. In this case, R2
= 0.75 represents a correlation between experimental
and estimated values. The MAE is 2.47 using tough
resin and an MSE value of 14.3. The correlation coef-
ficient (R2) between the results and the targets was
calculated. In this case, R2 = 0.97.

MAE evaluated the predictive performance of the
model, MSE and R2 values. Previous research [26],
[32, 33] recommends that the model should have high
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R2 and low MAE and MSE for the neural model to
have high efficiency. Figure 11 shows the results of
the ANN training process after reaching the minimum
gradient. Table 5 presents the results of MAE and
MSE after network training.

(a) (b)

(c) (d)

Figure 9. Overall comparison between predicted and ex-
perimental values of abrasive wear. a) Abrasive wear with
Clear Resin b) Abrasive wear with Tough Resin c) Hard-
ness with Clear Resin d) Hardness with Tough Resin

Table 5. MAE, MSE and R2 statistics of the neural model

DATA SET MAE MSE R2
Abrasive wear of Clear resin

Training 0.06 0.01
0.75Validation 0.09 0.01

Tough resin abrasive wear
Training 0.06 0.01

0.69Validation 0.09 0.02
Clear resin hardness

Training 3.88 33.48
0.92Validation 4.28 35.46

Tough resin hardness
Training 2.17 14.41

0.97Validation 2.47 14.33

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10. Evolution of the mean absolute error and
evolution of the mean squared error with the number of
epochs. a) MAE of abrasive wear with Clear Resin b) MSE
of abrasive wear with Clear Resin c) MAE of abrasive wear
with Tough Resin d) MSE of abrasive wear with Tough
Resin e) MAE of hardness with Clear Resin f) MSE of
hardness with Clear Resin g) MAE of hardness with Tough
Resin h) MSE of hardness with Tough Resin

(a) (b)

(c) (d)

Figure 11. Regression between the data presented by the
neural network and the real values obtained experimentally
for abrasive wear. a) Abrasive wear with Clear Resin b)
Abrasive wear with Tough Resin c) Hardness with Clear
Resin d) Hardness with Tough Resin

Table 6 presents the best hyperparameter settings
for the neural model, considering the statistical results
and computational cost.
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Figure 12 illustrates the distribution of the resid-
uals of the model. Most of the residuals are close to
zero, which determines the satisfactory performance
of the proposed neural network model. The residuals
are not close to a normal curve. This behavior may be
due to the small sample size considered for training.

(a) (b)

(c) (d)

Figure 12. The distribution plot of residuals tends to a
Gaussian curve, i.e. most of the residuals tend to approach
the value of zero. a) Abrasive wear Clear Resin b) Abrasive
wear with Tough Resin c) Hardness with Clear Resin d)
Hardness with Tough Resin

Table 6. Hyperparameters of the neural network model

PARAMETER VALUE
Network architecture 5 - 96 - 96 - 1

Input parameters - Resin type
- Curing time
- Print orientation

Output parameters Taber wear index (IWT) and hardness
Activation function ReLu

Optimiser Adán
Performance function - Mean sqare error (MSE)

- Mean absolute error (MAE)
- Coefficient of determination (R2)

Learning rate 0.001
Number of iterations 500

Batch size 10

The prediction of the network was determined
through the estimated values during the validation
of the neural network model. However, it is observed
that several values do not agree with the real data.
This problem could be caused by the following three
factors: type of material, lack of sampling accuracy
and the architecture of the neural network.

Table 7 represents the percentage error presented
by the network on each validation data. The results
indicate the similarities between the experimental stud-
ies and the neural model, supporting the reliability of
the model.

Table 7. Abrasion rate of the prediction error compared
to actual values

DATA SET % ERROR
Clear resin abrasive wear 19.34
Tough resin abrasive wear 19.60

Clear resin hardness 6.87
Tough resin hardness 3.92

4. Conclusions

The first objective is related to the analysis of the
mechanical properties of the resins, it was determined
that hardness and stress increase as a function of the
post-curing time of each resin. The Tough and Clear
resins have shown a definite pattern in their behavior,
especially in hardness and abrasion. When uncured,
their properties are lower than when cured at 60 min,
which is in line with the manufacturer’s recommen-
dations. This jump is very noticeable especially in
hardness and tensile strength. If the curing time is
increased, their properties have a negligible increase.
After the maximum curing time of 120 min, there will
be no appreciable improvement in properties.

The neural network model successfully predicted
the experimental results with a mean square error of
0.014 and a mean absolute error of 0.085 using clear
resin. The MAE is 2.27 using tough resin and an MSE
value of 14.33. The correlation coefficient (R2) between
the results and the targets was calculated. In this case,
R2 = 0.97. This shows that the predicted results agree
with the measured values. It is also verified that the
artificial neural network model is reliable and that
the predicted results provide useful information for
developing new abrasive wear resistant materials.

The visual surface diagrams constructed with the
network results can be used to monitor the impact of
wear evolution, reduce damage, and prevent compo-
nent fracture. Finally, it is concluded that SLA 3D
printing with Clear and Tough resins are good alterna-
tives for use in the printing of emerging components
due to their hardness and good abrasive wear behavior.

The abrasion experiment is limited to a medium
grade. Due to the use of grinding wheels of the type
mentioned above. As there is a specific degree of abra-
sion, the experimental conditions are limited to those
proposed by the ISO 9352 abrasion standard. If it is
necessary to know the behavior of the material un-
der high and low abrasion, it is advisable to conduct
experiments using grinding wheels that meet the re-
quirements.
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