SciELO - Scientific Electronic Library Online

 
vol.2 número2Interfaz gráfica de usuario para una línea de luz de sincrotrónDetección de Cd (II) y Pb (II) por voltamperometría de separación anódica utilizando electrodos de carbono vidriosos modificados con aleación bimetálica Ag-Hg y Ag-Bi índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Revista Digital Novasinergia

versión On-line ISSN 2631-2654

Novasinergia vol.2 no.2 Riobamba jun./nov. 2019  Epub 10-Dic-2019

https://doi.org/10.37135/unach.ns.001.04.07 

Research Article

Desperdicio de agua a través del equipo sanitario

Drinking water wastage through sanitary equipment

1 Facultad de Ingeniería, Universidad Nacional de Chimborazo, Avda. Antonio José de Sucre, Km 1.5 Vía a Guano, Riobamba, Ecuador, 060108; cizurieta@unach.edu.ec; cbravo.fic@unach.edu.ec; amerino.fic@unach.edu.ec; dyepez@unach.edu.ec


Resumen:

Considerando los cambios climáticos, los problemas urbanísticos y los avances tecnológicos, la demanda de agua potable seguirá siendo un tema de investigación. En países en desarrollo mucha gente todavía no tiene suficiente agua potable para satisfacer sus necesidades básicas. No hay suficiente información técnica aplicada en la gestión del agua para optimizar los consumos de agua (DWC) y para mejorar su distribución. Este estudio identifica la correlación entre DWC y los aparatos sanitarios (SD). Provee modelos para calcular DWC a través del número de SD que hay en un edificio residencial. La información primaria obtenida en 11 ciudades ecuatorianas contiene las características sociales, económicas, climáticas, demográficas y antropogénicas y acerca de los consumos de agua potable durante seis meses. Algunos valores atípicos fueron procesados a través de los diagramas de cajas y bigotes. Utilizando análisis estadístico descriptivo se encontraron modelos lineales con una perfecta o muy fuerte correlación (R>0.75; p valor< 0.05) en las ciudades grandes. En las ciudades medianas, el equipo sanitario (SE) sirve para calcular el DWC a través de otro modelo lineal (R=0.4315; p-valor=0.0097). Estos modelos matemáticos son herramientas importantes para definir políticas para optimización del consumo de agua potable. En las ciudades grandes y medianas, el consumo de agua potable aumenta cuando el número de aparatos sanitarios (SD) aumenta. El desperdicio de agua potable ocurre a través de un excesivo número de aparatos sanitarios en los edificios residenciales.

Palabras clave: Consumo; agua potable; dispositivos sanitarios; desperdicio; agua

Abstract:

Considering the climatic changes, the overall urbanization problems and the technological advances, drinking water demand should always be a matter to research yet. In developing countries, many people still do not get drinking water enough to satisfy their basic needs. There is not sufficient technical information to apply in water management in order to optimize drinking water consumption (DWC) and to distribute it better. This study identifies the correlation between DWC and sanitary devices (SD). It provides some models to calculate the DWC by knowing how many SD there are in a residential building. The primary data obtained from 11 Ecuadorean cities, contains information about social, economic, climatic, demographic and anthropogenic characteristics, as well as DWC for 6 months. Some SD outliers handled with Box plot. Through descriptive statistical assessment we got some lineal models with a perfect or very strong correlation (R>0.75; p values< 0.05) in big cities. In medium cities, the Sanitary equipment (SE) is used to calculate the DWC by another lineal model (R=0.4315; p-value=0.0097). These mathematical models are important tools to define DWC optimization policies. The DWC increases because the number of SD increase en medium and big cities. Water wastage occurs through excessive SD in the residential buildings.

Keywords: Consumption; drinking water; sanitary devices; wastage; water

Introduction

There is still a huge population in the world not having drinking water while other people have it too much. The water distribution systems (WDS) do not have tools enough to balance the inequitable distribution. Some authors direct their research to the economical approach through tariffs systems proposals (Sahin, Bertone & Beal, 2017; Santopietro et al., 2018). Others Scientists are especially concerned about improving WDS (Tricarico, de Marinis, Gargano & Leopardi, 2007) because the fresh water availability (Rodell et al., 2018) is becoming scarce and the urbanization increases together with the human comfort and the necessity to supply drinking water as well (UNESCO, 2009).

The climatic change also impacts the fresh water availability (Rodell et al., 2018) and consequently affects the drinking water consumption DWC. Since these events seem to be unavoidable, some authors have taken other direction to optimize the DWC. Some reports demonstrate water consumptions rises when the amount of dish washers as well as clothes washing machines increase at home (Morote Seguido, 2017).

Other Authors go further and made quantifications of water use per person in residential buildings (Matos, Teixeira, Duarte & Bentes, 2013). Morote Seguido (2017), made a wide bibliographic review about DWC. He identified the following factors: social, demographic, economical, management, psychological, urban and climatological factors, which affect the DWC. The demographical and climatological incidence was recently quantified by Arellano, Bayas, Meneses & Castillo (2018)

From the demographic approach, the DWC shows different patterns in small, medium and big cities (Arellano et al., 2018). This report keeps the same range of cities sizes and quantifies the DWC per capita, upon the number of sanitary devices at home. Its aim is to provide some lineal models to quantify the DWC by knowing how many sanitary devices there are in a residential house. The SD is easy to identify when designs and building construction need authorization by WDS managers. The models allow managers to set up tariffs or bonds to the users in order to change the water consumption habits. This article contributes to water conservation as well as water management literature.

Methodology

2.1 Cities characteristics

The cities are located in three geographical regions in Ecuador, with different socio economical and climatic characteristics. Arellano et al. ( 2018) reported three groups of cities (small, medium and big), with DWC similarities. This paper analyzes the variables into each group of cities. Cities population were withdrawn from national census reports carried out in 2010 (table 1).

2.2 Samples

Every month the researchers wrote down the water consumption data from residential buildings micrometers. The data had registered m3 consumption with a decimal fraction and converted to liters per month. The fields’ work in 11 cities started in 2013 and finished in 2015 (Carrillo & Quintero, 2013; Montenegro & Tapia, 2014; Morillo & Luna, 2013), (Barreno, 2015; Cáceres & Rubio, 2015; Noriega, 2015; Patiño & Pino, 2014; Sagñay & Carguachi, 2015; Samaniego & Muela, 2015).

The field`s work on each city took six months. The whole field information contained mainly: how many people live in a residential building, how many and which sanitary devices they have. Therefore, we could know how much drinking water per person is consumed and how many sanitary devices per person there are.

Table 1: Cities, population, size and samples. 

Population range Size City Population inhabitants 2010 Sample records
500 - 8000 Small Columbe 526 258
Cubijíes 588 264
Guamote 2648 294
Chambo 4459 330
Quimiag 5257 270
Guano 7758 354
8000 - 30000 medium Joya Sachas 11480 312
Macas 18984 406
Guaranda 23874 678
30000 - 150000 Big Ventanas 38168 588
Riobamba 146324 1296

2.3 Variables

The DWC expressed as per capita consumption (PCC) (lt/person-day). The primary information shows sanitary, social and economic characteristics from each house sampled. The sanitary devices (SD) are toilet, washbasin, shower, kitchen sink and clothes washing machine (CWM). We call sanitary equipment (SE) to all devices together. The SD and SE area expressed in units per person. Since the people’s habits are rather different, this study includes SD more often used in South American countries. Therefore, the bath as well as dish washer machines were not.

2.4 Data process

The Statistical software R was applied to make a descriptive statistical assessment due to small amount of data.

We applied the simple lineal regression technique to infer data from others. We calculated the Pearson correlation coefficient R to determine a parameter variation with relation to another parameter (SD related CPC or SE related CPC). We also calculated the Spearman determination coefficient R². The R² values are between 0 and 1. The closer to 1, the better the model is. When R² values are higher than 0.6 the relation is significant. When R is between 0.50 and 0.75, the correlation is considerable. When R is between 0.75 and 0.90, the correlation is very strong. When the R is between 0.90 and 1.00, the correlation is perfect (Hernández, Fernández & Baptista, 2006).

A correlation will be statistically significant when p < 0.05. It will be statistically highly significant when p < 0.001 (less than one in a thousand chance of being wrong). When the pattern shown a lineal tendency, the model is:

where the constants m and b are determined by the least square method.

Results and Discussion

3.1 Big cities (30000-150000 inhabitants)

When the analysis is done individually, between each sanitary device and the DWC, there is a perfect correlation between toilet, washbasin, shower and CWM respectively, with PCC values (R² >0.8; p<0.05). There is a strong correlation between kitchen sink and PCC (R² >0.60; p<0.05). The p value so low means it is significant from statistical point of view.

The equations state:

y= monthly average drinking water per capita consumption (liters/ person-day).

x= number of each sanitary device individually (toilet, washbasin, shower, kitchen sink and clothes washing machines) per person (units/person).

These equations could be used to predict the DWC from a residential building by counting the number of a sanitary devices.

When we consider SD as a set, we call it sanitary equipment (SE). The Figure 3 plots SE against drinking water per capita consumtion. The lineal model obtained is considerable and highly significant statitically (Pearson R = 0.6146 y p-valor = 0.001, Table 2). The DWC increases when SD and SE increase. It seems water consumption increases because there is more sanitary device rather than water necessities. Will water demand drop down if people would not have many SD at home? It confirms that water consumption increases as well as the number of sanitary water users increase at home (Morote Seguido, 2017).

In both cases either with sanitary devices individually or as equipment, the models could predict the DWC, in big cities.

Medium cities (8000-30000 inhabitants)

In the medium size cities (Guaranda`s data was removed) the relations between al SD and PCC are considerable (R > 0.5) but they do not have stadistical signficance because their p values are much higher than 5% (table 3). Therefore we did not calculate lineal equations.

Small cities (8000-30000 inhabitants)

In the cities’ smaller than 8000 people the results are much different than the previous ones. There is not statistical significance between sanitary devices and PCC (p-value is much higher than 5%, table 4) and there is no aceptable correlation (R values are to low). The DWC in small cities does not depend on the number of sanitary devices at all. The correlation between DWC and SE, in small cities, is negative and is not valid from statistical point of view (Pearson R =-0.2166, table 4) although is highly significant (p-valor de 0.0568, figure 5). Perhaps other factors affect the DWC in small cities, thus because the graphic trends are different from big and medium cities.

Figure 1: Sanitary devices per capita from 11 cities. 

Figure 2: Sanitary devices per capita from 9 cities. 

Table 2: Sanitary devices and equipment, versus drinking water per capita consumption in big cities (30000-150000 inhabitants). 

Sanitary device R 2 R p-valor Equation
Toilet 0,908 0,9529 0,0003 y = 165,86x + 101,2
Wash basin 0,8902 0,9435 0,0004 y = 160,23x + 107,65
Shower 0,8954 0,9463 0,0004 y = 221,69x + 100,59
Kitchen sink 0,6046 0,7776 0,0231 y = 621,7x + 53,306
Clothes Washing Machine (CWM) 0,9573 0,9784 0,0001 y = 434,48x + 145,79
Sanitary equipment 0,3777 0,6146 0,001 y = 103,5x + 163,94

Figure 3: Drinking water consumption and sanitary equipment in big cities (30000-150000 inhabitants). 

Table 3: Sanitary devices and equipment, versus drinking water per capita consumption in medium cities (8000-30000 inhabitants). 

Sanitary devices R 2 R p-valor Equation
Toilet 0,3023 0,5498 0,2010 -
Washbasin 0,3093 0,5561 0,1948 -
Shower 0,3285 0,5731 0,1786 -
Kitchen sink 0,3457 0,5880 0,1650 -
Clothes Washing Machine 0,5439 0,7375 0,0585 -
Sanitary equipment 0,1862 0,4315 0,0097 y = 190,54x + 180,82

The researh about water quality, water cost, total inflation, leakings will provide more information about it. Figure 1 shows high peaks in two cities (Guaranda and Chambo).

Applying the box plots to identity the outliers and removing the data from those cities, we obtain figure 2, it diminished the data. However, when the sanitary equipment SE is drawn against the drinking water per capita consumption (figure 4), it yields a medium correlation (R=0.4315; R2= 0.1862) with statistically highly significance (p-value=0.0097).

The DWC could be predicted by counting all sanitary devices and applying the following lineal model. It is valid for residential buildings.

The R value is rather low perhaps due to lack of data.

Where y is the label for monthly average drinking water consumption (l/person-day); and X represents the number of: toilets, washbasins, showers, kitchen sinks and clothes washing machines together (units/person).

Table 4: Sanitary devices and equipment, versus drinking water per capita consumption in small cities (less than 8000 inhabitants). 

Sanitary devices R 2 R p-valor
Toilet 0,0138 -0,1175 0,6768
Wash basin 0,0043 -0,0656 0,8171
Shower 0,0439 -0,2095 0,4536
Kitchen sink 0,2130 -0,4615 0,0833
Clothes Washing Machine 0,1866 -0,4320 0,0735
Sanitary equipment 0,0469 -0,2166 0,0568

Figure 4: Drinking water consumption and sanitary equipment in medium cities (8000 a 30000 inhabitants). 

Figure 5: Sanitary equipment and drinking water consumption per capita (less than 8000 inhabitants). 

4 Conclusion

The drinking water consumption (DWC) in medium and big cities, depends directly on the number of sanitary devices (SD). The clothes washing machines (CWM) lineal models seem to give better results than the other devices equations. In big cities, the CWM and DWC got a perfect correlation, with high statistical significance. In medium cities, the same device and DWC model got a considerable correlation with statistical significance. In big cities, the sanitary equipment and DWC model got also a considerable correlation with high statistical significance. In medium cities an unacceptable correlation was got. We can not calculate the DWC in small cities because it has not correlation with SD.

It seems people misuse water when they have too many sanitary devices in medium and big cities. The DWC rises when SD rises too (Morote Seguido, 2017). If we see the other way around, the DWC would diminish if the number of SD would diminish too. This correlation gives a very important contribution to define awareness’ strategies to optimize DWC in Ecuador. The equations yield useful values to fix water tariff in function of SD number in a residential building (Santopietro et al., 2018). The more SD the higher the water tariff. Santopietro mentions the economic value of water recognized by the International Conference on Water and Sustainable Development (ICWE). If it is so, these mathematical models help to calculate the water distribution cost based on the number of SD. Santopietro calculates the WDS rehabilitation cost, but he does not mention about the consumption cost. The WDS managers could apply these models to set up differentiated rates for water consumption. The more sanitary devices at home, the higher the tariff to pay.

Conflict of Interest

The authors declare there is not conflict of interest at all.

References

Arellano, A., Bayas, A., Meneses, A. & Castillo, T. (2018). Los consumos y las dotaciones de agua potable en poblaciones ecuatorianas con menos de 150 000 habitantes. NOVASinergia, 1(1), 23-32. Retrieved from: http://novasinergia.unach.edu.ec/index.php/novasinergia/article/view/22/4Links ]

Barreno, K. (2015). Determinar la influencia de la situación socioeconómica, algunos factores meteorológicos y la calidad del agua, en el consumo de agua potable de la parroquia urbana del cantón La Joya de los Sachas perteneciente a la provincia de Orellana. Universidad Nacional de Chimborazo. [ Links ]

Cáceres, E. & Rubio, V. (2015). Efectos de los factores Socioeconómicos, climatológicos y de calidad del agua, que inciden en el consumo de agua potable, caso de estudio parroquias urbanas La Matriz y el Rosario del cantón Guano. Universidad Nacional de Chimborazo. [ Links ]

Carrillo, A. & Quintero, H. (2013). Indicadores de cantidad y calidad del agua consumida en la ciudad de Riobamba. Universidad Nacional de Chimborazo. [ Links ]

Hernández, R., Fernández, C. & Baptista, P. (2006). Metodología de la investigación (Cuarta). México: McGraw-Hill. [ Links ]

Matos, C., Teixeira, C. A., Duarte, A. A. L. S. & Bentes, I. (2013). Domestic water uses: Characterization of daily cycles in the north region of Portugal. Science of the Total Environment, 458-460, 444-450. https://doi.org/10.1016/j.scitotenv.2013.04.018 [ Links ]

Montenegro, D., & Tapia, Y. (2014). Indicadores de cantidad y calidad del agua consumida en la ciudad de Macas. Universidad Nacional de Chimborazo. [ Links ]

Morillo, P. & Luna, M. (2013). Determinación de indacadores de cantidad y calidad del agua consumida en la ciudad de Ventanas. Universidad Nacional de Chimborazo. [ Links ]

Morote Seguido, Á. F. (2017). Factores que inciden en el consumo de agua doméstico. Estudio a partir de un análisis bibliométrico. Estudios Geográficos, 78(282), 257. https://doi.org/10.3989/estgeogr.201709 [ Links ]

Noriega, D. (2015). Estudio del consumo de agua potable y de los principales factores que afectan la utilización del agua en el cantón Chambo, para optimizar el uso del recurso. Universidad Nacional de Chimborazo. [ Links ]

Patiño, J. & Pino, F. (2014). Estudio del consumo de agua potable y de los principales factores que afectan la utilización del agua en el cantón Guaranda, para optimizar el uso del recurso. Universidad Nacional de Chimborazo. [ Links ]

Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H. K., Landerer, F. W., & Lo, M. H. (2018). Emerging trends in global freshwater availability. Nature, 557(7707), 651-659. https://doi.org/10.1038/s41586-018-0123-1 [ Links ]

Sagñay, L. & Carguachi, E. (2015). Análisis comparativo entre las características socioeconómicas, climatológicas y el gasto de agua potable de las parroquias Guamote y Columbe. Universidad Nacional de Chimborazo. [ Links ]

Sahin, O., Bertone, E. & Beal, C. D. (2017). A systems approach for assessing water conservation potential through demand-based water tariffs. Journal of Cleaner Production, 148, 773-784. https://doi.org/10.1016/j.jclepro.2017.02.051 [ Links ]

Samaniego, J. & Muela, R. (2015). Análisis comparativo entre las características socioeconómicas, climatológicas y el gasto de agua potable de las parroquias de Cubijíes y Quimiag. Universidad Nacional de Chimborazo. [ Links ]

Santopietro, S., Tricarico, C., Morley, M. S., Savic, D. A., Kapelan, Z. & Gargano, R. (2018). The Water Tariff in a WDS Rehabilitation, https://www.researchgate.net/publication/327791342_The_Water_Tariff_in_a_WDS_Rehabilitation ,(July), 1-8. https://doi.org/10.29007/nqjt [ Links ]

Tricarico, C., de Marinis, G., Gargano, R. & Leopardi, A. (2007). Peak residential water demand. Proceedings of the Institution of Civil Engineers - Water Management, 160(2), 115-121. https://doi.org/10.1680/wama.2007.160.2.115 [ Links ]

UNESCO. (2009). El agua en un mundo en constante cambio, 16. Retrieved from http://www.unesco.org/ [ Links ]

Recibido: 16 de Mayo de 2019; Aprobado: 08 de Noviembre de 2019

* Correspondence: aarellano@unach.edu.ec

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons