SciELO - Scientific Electronic Library Online

 
vol.48 número1Análisis de la Correlación entre las Emisiones Gaseosas y el Desempeño Energético de Fuentes Fijas de Combustión en EcuadorImplementación del Modelo Pss2b en Simulink índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Revista Politécnica

versión On-line ISSN 2477-8990versión impresa ISSN 1390-0129

Rev Politéc. (Quito) vol.48 no.1 Quito ago./oct. 2021

https://doi.org/10.33333/rp.vol48n1.05 

Articles

Análisis de Inundación por Rotura de Presa Utilizando el Modelo HEC-RAS 2D: Caso de Estudio de la Presa Mulacorral, Provincia de Tungurahua, Ecuador

Analysis of Flooding by Dam Breaking Using the 2D HEC-RAS Model: Case Study of the Mulacorral Dam, Tungurahua Province, Ecuador

Jorge Toapaxi Alvarez1  * 
http://orcid.org/0000-0003-1344-5159

Andrés Acero Quilumbaquin1 
http://orcid.org/0000-0001-8389-6874

1Escuela Politécnica Nacional, Facultad de Ingeniería Civil y Ambiental, Quito, Ecuador


Resumen:

Este estudio tiene como objetivo analizar la inundación causada por la falla hipotética de la Presa Mulacorral, cuyo embalse está localizado en la cuenca alta del río Ambato en la cota 3831 msnm. La presa está ubicada a 42 kilómetros en dirección noroeste de la ciudad de Ambato, capital de la Provincia de Tungurahua, Ecuador. Para el análisis, se consideró una longitud de cauce de 50 kilómetros aproximadamente, desde el pie de la presa hasta los límites de la ciudad de Ambato, en el sector de la planta de tratamiento de aguas residuales. Se ejecutó 10 planes de simulación considerando: el modo de la falla de la presa (tubificación y desborde), opciones de cómputo y tolerancias del programa. Los resultados fueron verificados con ecuaciones de regresión, desarrolladas con base en antecedentes históricos. Los escenarios de rotura presentan en todos los casos niveles de agua que alcanzan la estructura de la vía Flores e infraestructura que se encuentra en las riberas del río Ambato, en un margen promedio de 100 metros. De los escenarios de rotura planteados, se destaca el modelo que utiliza la Ecuación de Froehlich (2008) para falla por desborde, ya que presenta resultados conservadores, un caudal pico máximo de 1271 m3/s y un tiempo de llegada de 2 horas con 20 minutos a la ciudad de Ambato.

Palabras clave: HEC-RAS; Mulacorral; simulación; bidimensional; presa; rotura

Abstract:

This study aims to analyze the flood caused by the hypothetical failure of the Mulacorral Dam, whose reservoir is located in the upper basin of the Ambato River at 3831 meters above sea level. The dam is located 42 kilometers northwest of Ambato city, capital of the Tungurahua Province, Ecuador. For the analysis, a length of approximately 50 kilometers was considered, from the dam foot to the limits of the Ambato city, in the wastewater treatment plant sector. Ten simulation plans were executed considering: the dam failure mode (piping and overflow), computation options and program tolerances. The results were verified with regression equations, developed based on historical background. In all cases, the failure scenarios present water levels that reach the Flores Avenue structure and infrastructure located on the banks of the Ambato River, in an average margin of 100 meters. Of the breakage scenarios proposed, the model used by the Froehlich Equation (2008) for overflow failure stands out, since it presents conservative results, a maximum peak flow of 1271 m3/s and a time of arrival of 2 hours and 20 minutes to the Ambato city.

Keyword: HEC-RAS; Mulacorral; simulation; two-dimensional; dam; breakage

1. INTRODUCCIÓN

El constante crecimiento poblacional y el incremento de las actividades económicas, aumentan la demanda de agua para: uso doméstico, agricultura, el sector industrial, la generación de energía eléctrica, recreación, entre otros. En este contexto, la construcción de presas para almacenamiento de agua permiten satisfacer dichas necesidades, constituyendo elementos indispensables para muchos países en vías de desarrollo (Altinbilek, 2002). De hecho, las presas han hecho aportes significativos para el crecimiento económico y social; así como también, han desempeñado un rol fundamental en la gestión del recurso hídrico, con miras a alcanzar la soberanía alimentaria y energética (Tortajada, 2015).

Actualmente, el embalse de Mulacorral tiene como objetivo la regulación y dotación de caudal destinado a riego y agua potable para la ciudad de Ambato, además de garantizar el caudal ecológico (Honorable Gobierno Provincial de Tungurahua, 2006 - HGPT).

Por otro lado, si bien es cierto, los beneficios que conlleva la construcción de una presa son numerosos, no se puede menospreciar que, la falla de una de estas estructuras ocasionaría daños en fauna, flora, infraestructura y pérdida de vidas humanas (Xiong, 2011). Específicamente, las inundaciones por rotura de presa han provocado desastres catastróficos para las vidas humanas, por lo que, los riesgos debido a esta causa, deben ser evaluados y mitigados cuidadosamente (Pen & Zhang, 2012).

Dentro de las causas de la falla de una presa se encuentran los factores hidrológicos, hidráulicos, geotécnicos, sísmicos, estructurales, operacionales y sabotaje (Yen y Tang, 1979). De los cuales, el factor hidrológico destaca debido a que el cambio climático global tiene incidencia directa sobre éste, pudiendo ocasionar que los diseños en etapas de factibilidad no se adapten a las condiciones de operación (Soares-Frazão et al., 2012).

Respecto a los factores hidráulicos y estructurales, el mayor porcentaje de fallas se producen en presas de materiales sueltos (tierra y enrocado) con alturas de entre 15 a 30 metros y con periodos de funcionamiento mayor a 5 años (Marengo, 1996); características presentes en la presa Mulacorral.

Con objeto de minimizar las posibles consecuencias de la falla de una presa, la modelación hidráulica del flujo post-rotura es un insumo importante para la creación de mecanismos de alerta temprana y evacuación de llanuras susceptibles a inundación (Begnudelli & Sanders, 2007; Xiong, 2011).

Para hacer frente a esta problemática, una de las opciones es el análisis mediante un modelo numérico computacional. La simulación numérica de inundaciones se desarrolla como un campo de investigación, debido al aumento de capacidades computacionales y a su disponibilidad (Prestininzi, 2008). En los últimos años, los ordenadores poseen un aumento exponencial en sus competencias sin incrementar su costo, haciendo que la modelación computacional sea una herramienta asequible y eficiente para simular el comportamiento de ríos durante avenidas (ShahiriParsa et al., 2016).

Dentro del amplio mercado de programas de modelación numérica, el programa HEC-RAS ha demostrado ser muy eficaz en la simulación de eventos de rotura de presas, proporcionando cálculos numéricos en una y dos dimensiones (Dasallas et al., 2019); así como también, en la capacidad de simular con precisión la propagación de inundaciones debido a este tipo de eventos, incluso en topografías empinadas y rugosas (Pilotti et al., 2020).

En el estudio, se consideró el planteamiento de escenarios hipotéticos, en los que se asume que el fallo de la presa no está asociado con algún evento sísmico o hidrológico, siendo el caudal disponible únicamente el almacenado en el embalse (4004630 millones de m3 - cota de embalse de 3836 m.s.n.m). Este volumen es obtenido a partir de la información del modelo digital del terreno, cuyo valor es mayor en 14.42% con respecto al proporcionado por el HGPT (2006); no obstante, un mayor volumen de agua representa un margen de seguridad.

Aunque se han alcanzado mejoras significativas en la modelación numérica de rotura de presa, es importante mencionar que, debido a las limitaciones del modelo numérico, las hipótesis de cálculo y la información cartográfica disponible; no se puede garantizar la precisión de los resultados, por lo que el presente análisis es de carácter referencial.

En consecuencia, la presente investigación se plantea los siguientes objetivos:

  • Determinar los calados (altura del nivel del agua) y velocidades máximas en las áreas probables de inundación producto del flujo post rotura de la presa.

  • Establecer el escenario de rotura de presa más probable, mediante la comparación con información de eventos históricos contenidos en la literatura.

  • Analizar el tránsito del hidrograma producido por la eventual falla de la presa, en puntos de control planteados desde el pie de la presa, hasta la periferia de la ciudad de Ambato.

2. CARACTERÍSTICAS DE LA PRESA MULACORRAL Y SU ZONA DE INFLUENCIA

La Presa Mulacorral está conformada por escollera (Figura 1), donde su cuerpo está compuesto por: un núcleo central, con material clasificado como grava limosa; filtros de grava arenosa, dispuestos en ambas caras de la presa; y espaldones compuestos por fragmentos rocosos, ubicados de menor a mayor granulometría, hacia los taludes de la presa. (Honorable Gobierno Provincial de Tungurahua, 2006).

Figura 1 Vista lateral de la estructura de la presa Mulacorral (HGPT, 2006

El embalse de Mulacorral tiene una capacidad máxima teórica de 3.5 millones de m3 en su cota de coronación, con un área inundada de 36 hectáreas. El embalse se abastece de las derivaciones de El Sombrero y El Tingo, y del agua proveniente de la subcuenca de la quebrada Mulacorral. El río de la Quebrada Mulacorral se une 7.1 kilómetros aguas abajo con el río Calamaca, que junto al río Colorado dan origen al río Ambato; como se muestra en la Figura 2.

Figura 2 Área de estudio y zona de influencia de la Presa Mulacorral 

La zona de influencia corresponde a un área de 1585.49 hectáreas, con una extensión de 50.00 kilómetros, medida desde el pie de la presa hasta la periferia de la ciudad de Ambato. Se definió cinco puntos dentro de la zona de estudio: pie de la presa (P1), inicio del río Ambato (P2), sistema de captación Ambato-Huachi-Pelileo (P3), puente Jaramillo entrada de la ciudad de Ambato (P4), sector “El Socavón” (P5) y puente “Curvo” (P6); cuyas coordenadas y elevación se muestran en la Tabla 1.

Tabla 1 Coordenadas de puntos de control (WGS 84 - zona 17 S) 

Referencia Código Coordenada UTM Elevación msnm
X Y
Pie de la Presa P1 741801 E 9867862 S 3846
Origen río Ambato P2 742595 E 9858298 S 3266
Captación A. H. P. P3 749473 E 9858527 S 3004
Pte. Jaramillo P4 762004 E 9861195 S 2587
Sector "Socavón" P5 765493 E 9864053 S 2477
Pte. "Curvo" P6 766957 E 9862840 S 2401

En inspecciones realizadas en la zona de estudio, se constató: un total de 23 puentes, ubicados a lo largo del río Ambato; además de infraestructura localizada en los márgenes de una avenida hipotética, como: el Sistema de Captación Ambato-Huachi-Pelileo, la vía Flores (principal acceso a la presa Mulacorral y Chiquiurcu), la Planta de Tratamiento de Agua Potable de Tilulún, el parque Luis A. Martínez y la Planta de Tratamiento de Aguas Residuales.

3. SÍNTESIS DEL ESQUEMA NUMÉRICO UTILIZADO POR HEC-RAS

El uso de un programa de simulación numérica exige al usuario el entendimiento de los conceptos y algoritmos matemáticos, que el modelo emplea en la resolución de los problemas de ingeniería. HEC-RAS utiliza las ecuaciones de Saint Venant, las cuales son una derivación de la ecuación de Navier Stokes, y corresponden a un conjunto formado por las ecuaciones de Continuidad y Momentum (Hydrologic Engineering Center, 2016).

3.1. Ecuación de Continuidad

La ecuación de continuidad establece que, para diferentes secciones en un mismo canal, el caudal se mantiene constante en función del tiempo y del espacio; es decir, el caudal que entra a una sección de control debe ser igual al caudal que sale de dicha sección (Chow, 1994b).

ddtv.c.ρd+s.c.ρVdA=0 (1)

Donde:

ddtv.c.ρd: representa la región espacial (volumen de control v.c.) ocupada por el fluido.

s.c.ρVdA: representa las condiciones de entrada/salida dentro de una sección de control

3.2. Ecuación de Momentum

Si se considera una presión hidrostática basándonos en: que la longitud horizontal es mucho mayor que la longitud vertical, la ausencia de cambios en la densidad y la ausencia de fuerza del viento; se puede llegar a la conclusión, que los términos de velocidad en el eje z pueden ser despreciados, obteniendo de esta manera las ecuaciones de cantidad de momentum (Chow, 1994).

Vt+VVx+gyx-gS0-Sf=0 (2)

Donde:

Vt: Término de aceleración local

VVx: Término de aceleración convectiva

gyx: Término de fuerza de presión

gS0-Sf: Término de aceleración gravitacional y fricción

HEC-RAS utiliza dos esquemas para la resolución de las ecuaciones de Saint Venant, el primero ellos, “Full Momentum” resuelve las ecuaciones de cantidad de momentum sin omitir ningún término. El segundo, corresponde al Método de Onda Difusa o “Difussion Wave”, éste omite los términos de aceleración local y convectiva (Chow, 1994). En problemas relativamente simples, el modelo de onda difusa presenta tiempos de cómputo menores y resultados similares al método de Full Momentum. Sin embargo, en problemas que presenten cambios bruscos en la geometría, se recomienda de Full Momentum (Hydrologic Engineering Center, 2016).

4. METODOLOGÍA

Sabat (2015) propuso un modelo y el diagrama de flujo para el análisis numérico del flujo inducido por el rompimiento de una presa, resolviendo las ecuaciones de Saint Venant 2D y considerando el método de volúmenes finitos. De manera similar, en este estudio se ha propuesto un diagrama de flujo (Figura 5), que contempla los pasos necesarios para modelar la inundación debido a la rotura de una presa en HEC-RAS 2D, el mismo que se fundamenta en los manuales presentados por el Hydrologic Engineering Center (2018).

4.1. Información Cartográfica

En el modelo, se consideró la siguiente información cartográfica:

  • Cartas topográficas a escala 1:50000, obtenidas de la base de datos del repositorio digital del Instituto Geográfico Militar (2012).

  • Modelos digitales del terreno (mdt), de precisión altimétrica igual a 1.5 m, con una definición de 3 por 3 m y 5 por 5 m, bajo el sistema de coordenadas WGS_1984_UTM_Zone_17S; obtenidos del repositorio digital del Ministerio de Agricultura y Ganadería (2019).

La capa se procesó mediante Sistemas de Información Geográfica (SIG), ArcMap, con el objeto de delimitar una posible zona de inundación. Es importante mencionar que, después de corridas preliminares en HEC-RAS 2D, la capa raster tuvo que ser corregida en el programa ArcMap, ya que existían zonas irreales de acumulación de agua.

En el modelo se estableció un mallado estructurado, correspondiente al área de influencia, el cual se encuentra conectado al área de almacenamiento (aguas arriba de la presa). Las características de la presa y el embalse utilizadas en la modelación se muestran en la Tabla 2.

Tabla 2 Características de la presa Mulacorral utilizadas en el modelo 

Descripción
Altura de la presa, m 23.01
Volumen del embalse, m3 4004630.00
Ancho Promedio, m 58.00
Talud aguas arriba 2H:1V
Talud aguas abajo 2H:1V

4.2. Tipo de Flujo

Previo a la introducción de datos hidráulicos, es importante analizar las condiciones del flujo a simular con el fin de configurar de manera correcta el modelo. A continuación, un resumen del tipo y estado del flujo según Chow (1994a):

  • Tipo de flujo: el flujo producto de la rotura de una presa no presenta un caudal constante en función del tiempo y espacio, por lo cual, se ha clasificado como un flujo discontinuo rápidamente variado.

  • Régimen del flujo: esta clasificación es función de las fuerzas inerciales, de viscosidad y gravedad. En este caso, se puede presentar fluctuaciones entre el flujo subcrítico y el supercrítico, a lo largo del río.

Cabe mencionar que las modelaciones consideran únicamente las características (propiedades físicas) del fluido agua y no una mezcla agua-sedimento (fluido no newtoniano); es decir, no contempla cambios de la viscosidad dinámica y cinemática, condición que a priori, se traduce en un aumento en la incertidumbre de los resultados, principalmente en la zona aguas abajo de la presa.

4.3. Condiciones Inicial y de Contornos

Debido a la escala del evento a simular, se asume como condición inicial en la zona susceptible de inundación (aguas abajo de la presa), una la profundidad de agua igual a cero, es decir, una superficie de terreno seca.

Se consideró como condición de contorno aguas abajo a la profundidad normal, mediante el ingreso de la pendiente del cauce de la sección final (Figura 3). Para ello, se utilizó el procedimiento para el cálculo de pendientes en ríos, empleado por Monsalve (1995). Es importante mencionar que, no se consideró a ríos aportantes los cuales presentan un caudal intrascendente en comparación al caudal producido post rotura.

Figura 3 Perfil longitudinal del tramo de estudio 

Como condición aguas arriba, se definió el área del embalse, con un volumen correspondiente a la elevación máxima de agua en el embalse (cota de la corona). Es importante indicar que, la presa Mulacorral tiene un vertedero de excesos capaz de evacuar 23 m3/s y una tubería de toma que permite captar 4.14 m3/s en su máximo nivel de operación; no obstante, con el objetivo de presentar el caso más desfavorable, no se consideró estas descargas.

4.4. Coeficiente de Rugosidad

La calibración de un modelo numérico de inundaciones, fundamentalmente consiste en asignar un valor para el coeficiente de rugosidad (Ministerio de Medio Ambiente y Medio Rural y Marino, 2011). Esto se debe a que, el coeficiente de rugosidad influye directamente en los resultados de velocidad y profundidad de agua; por lo tanto, su determinación es de gran importancia en la configuración del modelo.

El proyecto de Mulacorral se diferencia de otros estudios como el de Pilotti et al. (2020) o Dasallas et al. (2019), debido a que carece de un evento histórico o modelo físico con el que se pueda comparar el coeficiente de rugosidad. Bajo esta condición, se tomó en cuenta la información de la literatura técnica, se definió el tamaño del mallado y se discretizó nueve zonas con diferentes valores de rugosidad.

Se utilizó la ecuación de Cowan para definir el valor del coeficiente de rugosidad “n” de Manning, la cual, utiliza variables respecto a: el material del canal, grado de irregularidad, variaciones en la sección transversal, efecto de obstrucciones, vegetación y efectos de meandros (Cowan 1956, Chow 1994a).

Adicional, siguiendo las recomendaciones del Hydrologic Engineering Center (2014), se consideró establecer un coeficiente de rugosidad que simule la turbulencia en la zona inmediatamente aguas abajo de la presa; además, se asignó un coeficiente que considere la infraestructura en las orillas del río Ambato y en la zona de probable inundación, como lo establece el Engineers Australia (2012). En la Figura 4, se muestran las nueve zonas definidas con su respectiva rugosidad.

Figura 4 Mapa de rugosidad “n” de Manning 

4.5. Generación de la Brecha

Los parámetros que inciden en el cálculo del hidrograma de salida de la presa, dependen de: su modo de falla, características de la brecha y tiempo de formación (Hydrologic Engineering Center, 1980). En afán de abarcar el mayor número de escenarios, se trabajó con las ecuaciones: Guía Técnica-1996 (Ministerio de Medio Ambiente, 2001); Froehlich (2008), MacDonald & Langridge-Monopolis (1984), Von-Thun & Gillette (1990) y Xu & Zhang (2009). Las cuatro últimas están incorporadas en el programa HEC-RAS 5.0.7 (Hydrologic Engineering Center, 2016).

A continuación, se exponen las consideraciones tomadas para el ingreso de datos referente a la formación de la brecha:

  • Para el caso de una presa de materiales sueltos el tiempo de formación de la brecha es progresivo.

  • El centro y elevación del fondo de la brecha son consideraciones específicas, que dependen del modelador y de las características de la presa. Para este caso se ha considerado que el centro de la brecha se encuentre en el eje de la presa y que el fondo de la brecha corresponde al nivel más bajo del mdt.

Los valores obtenidos mediante las ecuaciones descritas, se indican en la Tabla 3.

Tabla 3 Tiempo de formación y geometría de la brecha; a) presa con alta erosionabilidad, b) presa con baja erosionabilidad 

Ecuación Ancho (m) Tiempo de formación (horas) Pendiente de taludes
Guía Técnica 38.96 0.42 1H:1V
Froehlich (2008) desborde 30.00 0.51 1H:1V
Froehlich (2008) tubificación 24.00 0.50 0.7H:1V
MacDonald & Langridge-Monopolis (1984) 10.00 0.66 0.5H:1V
Von Thun & Gillette (1990) a 62.00 0.33 0.5H:1V
Xu & Zhang (2009) a 54.00 0.55 2.01H:1V
Von Thun & Gillette (1990) b 62.00 0.50 0.69H:1V
Xu & Zhang (2009) b 29.00 3.26 0.96H:1V

4.6. Análisis de Sensibilidad

4.6.1. Balance del Volumen de Agua

Como lo establece Wang (2020), un análisis de equilibrio del volumen del agua es fundamental para establecer la coherencia de un modelo numérico. Para definir el mdt que utilizó este análisis, se modeló y calculó el volumen acumulado con el mdt de 3 por 3 m y con el de 5 por 5 m, en iguales condiciones y tolerancias del programa. En la Tabla 4, se muestran los resultados del volumen acumulado, para los puntos de control P1, P2, P3 y P4.

Tabla 4 Balance de agua para los mdt de 3 por 3 m y 5 por 5 m 

mdt 3x3 mdt 5x5
Volumen acumulado m3 Error relativo % Volumen acumulado m3 Error relativo %
P1 4004377 0.01 3993793 0.27
P2 3988199 0.41 3522588 12.04
P3 3929828 1.87 3483256 13.02
P4 3759947 6.11 1778944 55.58

En el modelo con el mdt de 3 por 3 m, se puede observar que el error en el balance del volumen de agua en el punto P4 es del 6.11%, por otra parte, el de 5 por 5 m mostró un desfase de más del 55%, lo cual se atribuye a la baja definición del mdt en las riberas del río Ambato, produciendo acumulación de agua.

4.6.2. Tamaño de Celda

Como lo establece el Hydrologic Engineering Center (2018), HEC-RAS permite obtener resultados similares con diferentes tamaños de celda en el mallado. En este sentido, con el objeto de establecer la relación adecuada entre tamaño de celda y tiempo de cómputo, se realizaron simulaciones con el mdt de 3 por 3 m, para un mallado de 6 por 6 m y 12 por 12 m de tamaño de celda. En la Tabla 5, se muestran para los puntos P1, P3 y P4, los resultados de calados, velocidad y caudal pico en función del tiempo.

Se puede observar que los valores de velocidad y calado son similares, con base en esto y al tiempo de cómputo, 4 veces menor, se determinó que la malla con celdas de 12 por 12 m presenta mejor relación entre tamaño de celda y tiempo de procesamiento. De igual manera, se puede verificar que los caudales pico presentan la misma evolución a través del río.

Tabla 5 Comparación de mallas (tamaño de celda) en función de la velocidad, calado, caudal y tiempo de cómputo 

Celda 6x6 tiempo computo: 4horas:10 min Celda 12x12 tiempo computo: 1hora:10min
Velocidad m/s Calado m Caudal Pico m3/s Velocidad m/s Calado m Caudal Pico m3/s
P1 7.95 8.59 4609 6.33 8.74 4615
P3 7.15 11.45 2292 6.94 11.28 2371
P4 3.51 6.97 1057 3.73 7.15 1307

Los análisis de sensibilidad fueron desarrollados en un ordenador con las características que se detallan en la Tabla 6.

Tabla 6 Características del computador utilizado en la modelación 

Modelo Intel® core™ i7-8700 CPU @3.2GHz 3.19 Hhz
Núcleos 6.00
RAM 16.00 GB
Sistema Operativo Windows 10
Procesador 64.00 bits

Como lo establece el Hydrologic Engineering Center (2016), la base fundamental para obtener un modelo hidráulico confiable es la calidad y confiabilidad de información topográfica a utilizar. El hecho de realizar un mallado fino en un mdt de baja calidad, será contraproducente para el estudio, por este motivo, el modelo bidimensional se trabajó en función del mdt de 3 por 3 m y con un mallado de 12 por 12 m.

La Figura 5 presenta el diagrama de flujo que sintetiza el desarrollo de la metodología planteada en este análisis.

Figura 5 Diagrama de flujo de un modelo de inundación por rotura de presa en HEC RAS-2D 

5. MODELACIÓN DE ESCENARIOS

Se plantearon diez escenarios para analizar el caudal pico en distintos puntos de control. Posteriormente, se obtuvo el error absoluto para determinar los escenarios más y menos desfavorables; los casos tomaron en cuenta los siguientes parámetros:

  • Modo de falla

  • Ecuación de resolución del modelo numérico

  • Ecuación de regresión para formación de brecha

5.1. Modo de falla - Desborde y Tubificación

Se planteó la utilización de la ecuación de Froehlich-2008 (Hydrologic Engineering Center, 2016) para definir la formación de la brecha por tubificación y desborde. Se utilizó la ecuación descrita por Froehlich ya que como cita Rodríguez et al. (2015), ésta ecuación representa de mejor manera la formación de brechas en presas zonificadas. La Figura 6, muestra que el caudal pico en P1 presentó una diferencia de 1073 m3/s, comparando el modo de falla de desborde con el de tubificación, esta diferencia disminuye conforme avanza la avenida hasta P4, donde la diferencia es del 5.48% y con un desfase de llegada de 7 minutos.

Es importante indicar que la distribución de los hidrogramas para ambos modelos, cumple con el balance de volumen de agua.

Figura 6 Hidrogramas producidos por desborde y tubificación en los puntos de control P1, P3 y P4 

5.2. Resolución del modelo numérico

Los modelos numéricos que maneja HEC-RAS son el método de “Full Momentum” y “Diffusion Wave” (Hydrologic Engineering Center, 2018). Se puede apreciar en la Figura 7 que, para P1 ambos modelos presentan hidrogramas que se superponen. Sin embargo, en el punto de control P2 el modelo de “Diffusion Wave” presenta inestabilidad. Esto concuerda con lo mencionado por el Hydrologic Engineering Center (2016), la resolución por el método de “Full Momentum” alcanza una mayor precisión y estabilidad en problemas de mayor complejidad. Cabe indicar que ambos modelos compartieron las mismas condiciones de borde y mdt, por lo cual se descarta una falla de modelo de Diffusion Wave por estas condiciones.

Figura 7 Hidrogramas aplicando el método de “Full Momentum” y “Diffusion Wave” en los puntos de control P1, P2, P3 y P4 

5.3. Ecuación de Regresión

Para la indagación de los efectos debido a la ecuación de regresión para formación de brecha, se realizó una sub clasificación entorno a efectos de erosión en el cuerpo de la presa. La Figura 8 muestra los hidrogramas para diferentes ecuaciones de geometría y tiempo de formación de la brecha, en función del volumen de almacenamiento y dimensiones geométricas de la presa y sin contar con factores de erosión.

Figura 8 Hidrogramas en los puntos de control P1, P2, P3 y P4, utilizando ecuaciones con base en la geometría y el volumen de almacenamiento 

En la Figura 8, se puede observar un caudal pico máximo de 4616.53 m3/s para la ecuación de la Guía Técnica y un caudal pico mínimo de 1723.91 m3/s correspondiente a la ecuación de MacDonald & Langridge-Monopolis (1984). Sin embargo, para P4 las ecuaciones presentan una diferencia de picos de caudal entre 1264 y 959 m3/s y un desfase de 24 minutos.

Por otro lado, la Figura 9 servirá para establecer las diferencias entre una presa construida técnicamente (menor erosión) y una presa construida sin fundamento ingenieril o formada de forma natural (mayor erosión). Estas ecuaciones consideran efectos de erosión, características geométricas y volumen de almacenamiento. Esta figura muestra una evolución gradual de manera similar, sin embargo, la ecuación de Xu & Zhang (2009) para una presa con poca erosión, presenta un tiempo extendido en la formación de la brecha.

Figura 9 Hidrogramas en los puntos de control P1, P2, P3 y P4 utilizando ecuaciones con base en efectos de erosión 

En la Figura 10, se plantea el proceso entorno a la modelación de los distintos escenarios de rotura para la presa Mulacorral.

Figura 10. Escenarios de rotura para la presa Mulacorral 

6. RESULTADOS Y DISCUSIÓN

6.1. Caudales Pico

La Tabla 7 resume los caudales pico obtenidos de los planes de modelación en el punto de control P1 (pie de la presa). En la misma, se calculó el error absoluto para establecer un intervalo de resultados. En base al error absoluto y asumiendo como correcto al valor de caudal pico promedio, se podría expresar nuestro margen de error es 3577.47 ± 613.83 m3/s; con base en este criterio los caudales pico que representan al modelo son los obtenidos mediante las ecuaciones de Froehlich (2008) y Von-Thun & Gillette (1990) b.

Tabla 7 Caudales pico para los escenarios de rotura de la presa Mulacorral en el punto P1 

n Ecuación Caudal Pico (m3/s) x-xm (x-xm) ^2
1 Guía Técnica 4616.5 1039.1 1079644.1
2 Froehlich (2008) desborde 4073.4 496.0 245994.4
3 Froehlich (2008) tubificación 2999.7 -577.8 333838.3
4 MacDonald & Langridge-Monopolis (1984) 1723.9 -1853.6 3435675.6
5 Von Thun & Gillette (1990) 4914.6 1337.1 1787952.1
6 Xu & Zhang (2009) 5851.4 2273.9 5170678.3
7 Von Thun & Gillette (1990) b 3857.3 279.9 78328.1
8 Xu & Zhang (2009) b 582.9 -2994.6 8967748.0
xm= 3577.47 ∑= 21099858.96

e=x-xm2n(n-1)

e=21099858.9688-1

e=613.83 m3/s

Considerando que los hidrogramas de ambas ecuaciones convergen en el punto de control P4 y con base en el criterio del Bureau of Reclamation (1998) de adoptar el escenario más desfavorable, se presenta el modelo de Froehlich por desborde, ya que muestra magnitudes mayores y representaría resultados más conservadores.

La Figura 11 presenta la relación entre caudales picos observados y calculados por la ecuación de Froehlich (rojo) obtenidos del registro del Bureau of Reclamation (1998). En esta gráfica se ha incorporado los caudales pico obtenidos en la modelación y calculados con la ecuación mencionada (color azul). A pesar de que, el modelo de tubificación se encuentra más cerca de la línea de tendencia, se escoge el escenario por desborde por el fundamento planteado anteriormente.

Figura 11 Caudales pico observados y calculados usando la ecuación de Froehlich (1995), extraída de Dam Safety Office (1998); y caudales pico Mulacorral 

6.2. Velocidades y Calados

Se estima que la avenida ingresa a la ciudad en el sector del Puente Jaramillo (P4) a las 2 horas con 20 minutos con un calado de 6.67 metros y una velocidad de 3.35 m/s. A las 2 horas con 53 minutos, la onda llega al sector de “El Socavón” (P5), con un calado 5.31 metros y una velocidad de 2.72 m/s. A las 3 horas y 42 minutos de iniciarse la falla de la presa, el flujo llega a la periferia de Ambato, al pte. “Curvo” (P6), donde se presenta una altura de agua de 4.16 metros y una velocidad de 2.55 m/s.

En la Figura 12, se observa el paso del flujo post rotura por la ciudad de Ambato, apreciándose que debido a la lejanía de la presa Mulacorral, el centro con más densidad poblacional no es afectado. Sin embargo, las riberas del río y la infraestructura que se encuentra dentro de sus márgenes, presenta calados entre 7 y 5 metros de altura.

De forma simultánea, la Figura 13 presenta los resultados de velocidades para cada punto de control ubicados en la ciudad de Ambato, los cuales están en un rango de 2 a 3 m/s.

El resumen de los valores máximos para calado y velocidad se muestra en la Tabla 8.

Tabla 8 Cuadro de velocidades y calados máximos para el modo de falla por desborde de la presa Mulacorral 

Velocidad máx. Calado máx.
Control m/s m
P1 5.90 8.29
P2 11.32 11.00
P3 6.83 10.76
P4 3.73 7.08
P5 3.12 5.55
P6 2.02 5.86

Figura 12 Mapa de calados del modelo de inundación por rotura de la presa Mulacorral 

6.3. Hidrogramas de llegada a la ciudad de Ambato

La Figura 14 muestra la atenuación de la onda de crecida, desde el pie de la presa (P1) hasta el puente “Curvo” (P6). Se presentan valores de 1271 m3/s en el puente Jaramillo, hasta 731 m3/s en el puente “Curvo”, a 47 kilómetros de distancia de la presa.

Considerando una relación simple entre longitud y tiempo que en llegar hasta la ciudad de Ambato, se puede obtener un valor de la velocidad con la que viaja la onda de 12 km/h.

6.4. Área potencialmente afectada

Se debe tener en consideración que valores de calado mayor a 1 metro de altura y velocidad mayor a 1 m/s representan riesgo potencial a vidas humanas, daños en infraestructura y ambiente (Ministerio de Medio Ambiente y Medio Rural y Marino, 2011). HEC-RAS permite obtener esta razón de velocidad y calado misma que se muestra en la Figura 15.

Figura 13 Mapa de velocidades del modelo de inundación por rotura de la presa Mulacorral 

Figura 14 Atenuación de la onda de crecida, desde el punto P1 hasta el punto P6 

El estudio refleja un área de inundación correspondiente a 566 hectáreas, repartidas en las riberas del río Ambato, con un alcance aproximado de 50 metros a ambos lados del eje del río. No obstante, este dependerá de la morfología del río y los taludes de la zona.

Figura 15 Mapa de velocidad x calado ciudad de Ambato 

La Figura 16 muestra la variación del régimen de flujo entre el punto de control P1 y P2, a 36 minutos de haberse iniciado el proceso de falla de la presa. Se verifica de acuerdo a la literatura que, conforme transita el frente de onda, el régimen de flujo pasa de un estado supercrítico a un estado subcrítico (Toro, 2001; Prestininzi, 2008).

Figura 16 Régimen de flujo rotura de la presa Mulacorral. Desde P1 hasta P2, t=36 minutos. 

Para finalizar, las Figuras 17 y 18, presentan la ubicación de los puntos de control y la visualización en tres dimensiones, utilizando la herramienta de 3D View incorporada en versión 5.0.7 de HEC-RAS.

Figura 17 Ubicación de puntos de control en la ciudad de Ambato 

Figura 18 a) Entrada de la ciudad de Ambato Pte. Jaramillo tiempo de llegada de la avenida 2 horas 20 minutos, b) Sector “El Socavón” tiempo de llegada de la avenida 2 horas 53 minutos, c) Periferia de la ciudad de Ambato Pte. “Curvo” tiempo de llegada 3 horas con 42 minutos 

7. CONCLUSIONES

Los rangos de velocidad, niveles de agua y caudales pico obtenidos mediante HEC-RAS, fueron comparados con fórmulas empíricas que se fundamentan en información de eventos históricos. Por lo tanto, este estudio se concibe como un análisis que muestra resultados referenciales, más no con fines de diseño o construcción de infraestructura.

La evolución de los hidrogramas mostró que las condiciones iniciales de formación de la brecha, tienen poca influencia en lugares que se encuentran alejados del evento de falla.

Los resultados de caudal pico obtenidos concuerdan con lo dicho por Wahl (2014), donde se establece estadísticamente que las ecuaciones de Froehlich (2008), Von-Thun & Gillette (1990), son mejores para predecir el tiempo de formación de la brecha. Por otra parte, la ecuación de Xu y Zhang (2009) presenta tiempos significativamente más largos, en este caso el tiempo de llegada de la onda a la ciudad de Ambato, con un desfase de 4 horas en relación a los otros modelos.

Un mallado bidimensional en una zona con pendientes encañonadas, como se dio en este caso, demandará de más gastos computacionales, los cuales pueden ser optimizados realizando una sección de una dimensión, siempre y cuando se haya comprobado que los modelos bidimensionales y unidimensionales presenten resultados relativamente iguales.

Se contempla una afectación directa el 65 % de la Vía Flores, debido al calado y la velocidad alcanzados en las riberas del río. Esto aumentará el tiempo de respuesta de acciones de ayuda en los poblados afectados en la zona media y alta del río Ambato en el hipotético caso de la rotura de la presa Mulacorral.

En caso de tener una zona extensa de estudio, donde se encuentren diferentes tipos de sustratos y características geométricas y morfológicas, se recomienda zonificar el mdt con el objeto de representar las condiciones del terreno, los cuales en áreas extensas evidentemente varía debido a tipo de vegetación de la zona y morfología del río.

Respecto al tiempo de llegada de la avenida a la ciudad de Ambato, no se presentan mayores discrepancias, por lo cual, el tiempo que tarde en la onda en recorrer la longitud aproximada de 36.2 kilómetros, desde presa Mulacorral hasta alcanzar el puente Jaramillo, es de 2 horas 20 minutos con un caudal pico de 1200 m3/s.

Es importante indicar que, el mdt utilizado para el mallado debe ser validado con el fin de evitar estancamientos de agua que produzcan una disminución en el caudal pico del hidrograma de llegada, así como también retardos de la avenida. Es desacertado trabajar con una mallado fino en un mdt de baja calidad.

A futuro, con base en este estudio, se puede profundizar en el análisis incluyendo en los escenarios, otros factores que generen o incidan en la rotura de la presa, como: cambio climático, eventos hidrológicos o eventos sísmicos.

AGRADECIMIENTO

Los autores agradecen al Honorable Gobierno Provincial de Tungurahua por las facilidades brindadas para el desarrollo de este estudio.

REFERENCIAS

Altinbilek, D. (2002). The Role of Dams in Development, International Journal of Water Resources Development, 18:1, 9-24, DOI: 10.1080/07900620220121620 [ Links ]

Begnudelli, L., & Sanders, B. (2007). Simulation of the St. Francis Dam-Break Flood. Journal of Engineering Mechanics 2007-11-01 133(11): 1200-1212, DOI: 10.1061/(ASCE)0733-9399(2007)133:11(1200) [ Links ]

Bureau of Reclamation, (1998). Prediction of Embankment Dam Breach Parameters, A Literature Review and Needs Assessment, DSO-98-004, United States Department of the Interior, Dam Safety Office. [ Links ]

Chow, V. (1994a). Hidráulica de Canales Abiertos. Bogotá Colombia: McGRAW HILL. [ Links ]

Chow, V. (1994b). Hidrología Aplicada. Bogotá Colombia: McGRAW HILL. [ Links ]

Dasallas, L., Kim, Y., An, H. (2019). Case Study of HEC-RAS 1D-2D Coupling Simulation: 2002 Baeksan Flood Event in Korea. Water 2019, 11(10), 2048. https://doi.org/10.3390/w11102048 [ Links ]

Engineers Australia Water Engineering (2012). Revision Project 15: Two Dimensional Modelling in Urban and Rural Floodplains. [ Links ]

Froehlich, David C. (2008). Embankment Dam Breach Parameters and Their Uncertainties. ASCE, Journal of Hydraulic Engineering, Vol. 134, No. 12, December 2008, 1708-1721. ISSN 0733-9429. [ Links ]

Honorable Gobierno Provincial de Tungurahua. (2006). Manual de Operación, Mantenimiento Y Auscultación (p. 36) ENT#091;Manual de OperaciónENT#093;. Tungurahua Ecuador: Honorable Gobierno Provincial de Tungurahua. [ Links ]

Hydrologic Engineering Center. (1980). Flood Emergency Plans Guidelines for Corps Dams. U.S. Army Corps of Engineers, Hydrologic Engineering Center, 609 Second Street, Davis, CA. [ Links ]

Hydrologic Engineering Center. (2016). HEC-RAS, River Analysis System Hydraulic Reference Manual. U.S. Army Corps of Engineers, Hydrologic Engineering Center, 609 Second Street, Davis, CA. [ Links ]

Hydrologic Engineering Center. (2018). HEC-RAS, River Analysis System Hydraulic Reference Manual. U.S. Army Corps of Engineers, Hydrologic Engineering Center, 609 Second Street, Davis, CA. [ Links ]

Hydrologic Engineering Center. (2014). Using HEC-RAS for Dam Break Studies. U.S. Army Corps of Engineers, Hydrologic Engineering Center, 609 Second Street, Davis, CA. [ Links ]

Instituto Geográfico Militar (2012). Geoportal. Quito, Ecuador. Recuperado de http://www.geoportaligm.gob.ec/portal/Links ]

MacDonald, Thomas C., & Langridge-Monopolis, J. (1984). Breaching characteristics of dam failures. ASCE Journal of Hydraulic Engineering, Vol 110, No. 5, May 1984, p. 567 -586. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:5(567) [ Links ]

Marejón, H. (1996) Análisis del riesgo de falla en presas, estadísticas y parámetros de referencia. Ingeniería Hidráulica en México, 11(2), 65-77. [ Links ]

Marengo, H. (1996). Estadísticas y Parámetros De Referencia. Ingenieria Hidraulica En Mexico, Vol XI, Num 2, XI, 65-77. http://www.revistatyca.org.mx/ojs/index.php/tyca/article/view/762Links ]

Ministerio de Agricultura y Ganadería (2019). Sistema de Información Publica Agropecuaria. Quito, Ecuador. Recuperado de http://geoportal.agricultura.gob.ec/Links ]

Ministerio de Medio Ambiente (2001). Guía Técnica para la elaboración de los Planes de Emergencia de Presas. Secretaria de Estado de Aguas y Costas, Dirección General de Obras Hidráulicas y Calidad de las Aguas. Madrid, España. [ Links ]

Ministerio de Medio Ambiente y Medio Rural y Marino (2011). Guía Metodológica para el Desarrollo del Sistema Nacional de Cartografía de Zonas Inundables, p. 245, Madrid, España. [ Links ]

Monsalve, G. (1995). Hidrología en la Ingeniería. Bogotá Colombia: TercerMundoEditores. [ Links ]

Peng, M., & Zhang, L. (2012). Analysis of human risks due to dam-break floods-part 1: A new model based on Bayesian networks. Natural Hazards, 64(1), 903-933. https://doi.org/10.1007/s11069-012-0275-5 [ Links ]

Pilotti, M., Milanesi, L., Bacchi, V., Tomirotti, M., & Maranzoni, A. (2020). Research on Flood Propagation for Different Dam Failure Modes: A Case Study in Shenzhen, China. Front. Earth Sci. 8:527363. doi: 10.3389/feart.2020.527363 [ Links ]

Prestininzi, P. (2008). Suitability of the diffusive model for dam break simulation: Application to a CADAM experiment. Journal of Hidrology. 361(1), 172- 185. DOI:10.1016/j.jhydrol.2008.07.050 [ Links ]

Rodríguez, L., Rodríguez, O., Marullo, C., & Barreto, W. (2015). Experiencias de modelación hidrodinámica de rotura de presas, mediante el uso de paquetes multidimensionales. Ágora de Heterodoxias, 1(2), 72-93. [ Links ]

Sabat, I., Link, O., & Ettmer, B. (enero-febrero, 2015). Flujo inducido por el rompimiento de una presa: análisis mediante modelación numérica. Tecnología y Ciencias del Agua, 6(1), 5-23. [ Links ]

ShahiriParsa, A., Noori, M., Heydari, M., Rashidi, M. (2016). Floodplain Zoning Simulation by Using HEC-RAS and CCHE2DModels in the Sungai Maka River. Air, Soil and Water Research. 9:9 55-62 doi:10.4137/ASWR.S36089 [ Links ]

Soares-Frazão, S., Canelas, R., Cao, Z., Cea, L., Chaudhry, H., Die Moran, A., El Kadi, K., Ferreira, R., Fraga, I., Gonzalez, N., Greco, M., Huang, W., Imran, J., Le Coz, J., Marsooli, R., Paquier, A., Pender, G., Pontillo, M., Puertas, J., Spinewine, B., Swartenbroekx, C., Tsubaki, R., Villaret, C., Wu, W., Yue, Z., & Zech, Y. (2012) Dam-break flows over mobile beds: experiments and benchmark tests for numerical models, Journal of Hydraulic Research, 50:4, 364-375, DOI: 10.1080/00221686.2012.689682 [ Links ]

Toro, E.F. (2001). Shock-capturing methods for free-surface shallow flows. Wiley, Chichester, U.K. [ Links ]

Tortajada, C. (2015) Dams: An Essential Component of Development, Journal of Hydrologic Engineering, 20(1). DOI: 10.1061/(ASCE)HE.1943-5584.0000919 [ Links ]

Von Thun, J. Lawrence, & Gillette, D. R. (1990). Guidance on breach parameters. Unpublished internal document, U. S. Bureau of Reclamation, Denver, Co. March 1990, 17 p. [ Links ]

Wahl, T. (2014), Evaluation of Erodibility-Based Embankment Dam Breach Equations, U.S. Department of the Interior Bureau of Reclamation Technical Service Center Hydraulic Investigations and Laboratory Services Group Denver, Colorado. [ Links ]

Wang, W., Chen, W., & Huang, G. (2020) Research on Flood Propagation for Different Dam Failure Modes: A Case Study in Shenzhen, China. Front. Earth Sci. 8:527363. doi: 10.3389/feart.2020.527363 [ Links ]

Xion, Y. (2011) A Dam Break Analysis Using HEC-RAS, Jou Journal of Water Resource and Protection, 3(6). Doi:10.4236/jwarp.2011.36047 [ Links ]

Xu, Y. & Zhang, L. M. (2009). Breaching Parameters for Earth and Rockfill Dams. ASCE Journal of Geotechnical and Geoenvironmental Engineering, Volume 135, No. 12, p. 1957-1970, December 2009. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000162 [ Links ]

Yen, B. C. y H. Tang, W. (1979). Hydraulic and hydrology aspects of dam safety. Proceedings Third ASCE Engineering Mechanics Division Speciality Conference. September. [ Links ]

Recibido: 20 de Agosto de 2019; Aprobado: 06 de Julio de 2021; Publicado: 31 de Agosto de 2021

*Autor de correspondencia:jorge.toapaxi@epn.edu.ec

Jorge Augusto Toapaxi Alvarez. Ingeniero Civil. Magister en Recursos Hídricos con mención en “Diseño de Proyectos Hidráulicos” de la Escuela Politécnica Nacional (EPN). Profesor e Investigador de la Facultad de Ingeniería Civil y Ambiental (FICA), desde 2015. Ha desempeñado los cargos de: Jefe del Laboratorio Docente de Hidráulica (2016-2019); Coordinador de la Maestría en Hidráulica (2018-2019); Director de Proyectos de Investigación en Mecánica Teórica - Computacional de Fluidos y Modelación Física de Fenómenos Hidráulicos, desde 2016. Actualmente, cursa sus estudios doctorales en Tecnología y Modelización en Ingeniería Civil, Minera y Ambiental en la Universidad Politécnica de Cartagena (España).

Andrés Manuel Acero Quilumbaquin. Ingeniero Civil Mención Hidráulica (2019) de la Escuela Politécnica Nacional. Actualmente se desempeña como administrador de contratos en el Gobierno Autónomo Descentralizado de la Provincia de Pichincha, de manera simultánea se encuentra desarrollando proyectos de simulación numérica relacionados a la rotura de presas del Ecuador, con el objeto de clasificarlas en función del riesgo potencial.

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons