SciELO - Scientific Electronic Library Online

 
vol.12 número2Análisis estadístico de datos de las precipitaciones usando métodos robustos y bootstrapRevisión acerca de biosensores basados en grafeno para la detección del SARSCOV- 2 índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


FIGEMPA: Investigación y Desarrollo

versión On-line ISSN 2602-8484versión impresa ISSN 1390-7042

Resumen

PADILLA SEFLA, Oscar Roberto  y  HARO RIVERA, Silvia Mariana. Aplicación de algoritmos de clasificación para la estimación de carbono orgánico del suelo en la provincia de Chimborazo, Ecuador. Figempa [online]. 2021, vol.12, n.2, pp.62-69. ISSN 2602-8484.  https://doi.org/10.29166/revfig.v12i2.3518.

The objective of the study was to evaluate the decision tree technique using the best supervised classification algorithm, which allows predicting the edaphic carbon content in the province of Chimborazo in native or endemic areas, considering the database of the Ministry of Agriculture and Levestock (MAG). In the estudy, the data set was cleaned and 10 useful variables were determined for the categorization of soil organic carbon, obtaining 4 classes: Very High, High, Medium and Low. The alforithm that provided the best percentage of efficiency and relevant results was Classification and Regression Trees (CART) using the cross-validation method. The refficiency of three algorithms was determined: C5.0, SMV and CART, selecting the CART by means of the cross-validation method for the construction of the tree. The results with the test data set generated a precision of 63.41 percentage points and a prediction error of 36.59 percent, these scopes are presented as a new alternative for SOC quantification, the calibrated model can be extended without the need to sample in situ, very useful in complex areas such as the forest ecosystem. The digital mapping allowed to reveal the existing SOC levels in soils of the Chimborazo province.

Palabras clave : Classification trees; supervised classification algorithms; edaphic carbon.

        · resumen en Español     · texto en Español     · Español ( pdf )