SciELO - Scientific Electronic Library Online

 número23Control de velocidad de un motor síncrono de imanes permanentes accionado por un inversor trifásico multinivel índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay articulos similaresSimilares en SciELO


Ingenius. Revista de Ciencia y Tecnología

versión On-line ISSN 1390-860Xversión impresa ISSN 1390-650X


KONTOROVICH, Valeri  y  RAMOS-ALARCON, Fernando. Robust filtering of weak signals from real phenomena. Ingenius [online]. 2020, n.23, pp.109-119. ISSN 1390-860X.

In a large number of real-life scenarios it is required to process desired signals that are significantly immersed into background noise: tectonic signals from the entrails of the earth, signals coming from the far away cosmos, biometric telemetry signals, distant acoustic signals, noninvasive neural interfaces and so on. The purpose of this paper is to present the description of a robust and efficient platform for the real time filtering of signals deeply immersed in noise (rather weak signals) with rather different nature. The proposed strategy is based on two principles: the chaotic modelling of the signals describing the physical phenomena and the application of filtering strategies based on the theory of non-linear dynamical systems. Considering as a study case seismic signals, fetal electrocardiogram signals, voice-like signals and radio frequency interference signals, this experimental work shows that the proposed methodology is efficient (with mean squared error values less than 1%) and robust (the filtering structure remains the same although the phenomenological signals are drastically different). It turns out that the presented methodology is very attractive for the real time detection of weak signals in practical applications because it offers a high filtering precision with a minimum computational complexity and short processing times.

Palabras clave : Chaos; Non-Linear Filtering; Dynamic Systems; Kalman Filter; Weak signals; Real Signals.

        · resumen en Español     · texto en Español     · Español ( pdf )