SciELO - Scientific Electronic Library Online

 
 issue23Análisis del comportamiento de las emisiones de CO2, CO y del factor lambda de un vehículo con sistema de inyección convencional con catalizador y sin catalizadorEfecto de la composición química del baño en la microestructura y resistencia a la corrosión de los recubrimientos de zinc por inmersión en caliente: una revisión author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Ingenius. Revista de Ciencia y Tecnología

On-line version ISSN 1390-860XPrint version ISSN 1390-650X

Abstract

CONTRERAS URGILES, Wilmer Rafael; LEON JAPA, Rogelio Santiago  and  MALDONADO ORTEGA, José Luis. Predicción de emisiones de co y hc en motores otto mediante redes neuronales. Ingenius [online]. 2020, n.23, pp.30-39. ISSN 1390-860X.

This paper explains the application of RNA (artificial neural networks) for the prediction of pollutant emissions generated by mechanical failures in ignition engines, from which the percentage of CO (% carbon monoxide) and the particulate can be quantified. Per million HC (ppm unburned hydrocarbons), through the study of the Otto cycle admission phase, which is recorded through the physical implementation of a MAP sensor (Manifold Absolute Pressure). A rigorous sampling protocol and consequent statistical analysis is applied. The selection and reduction of attributes of the MAP sensor signal is made based on the greater contribution of information and significant difference with the application of three statistical methods (ANOVA, correlation matrix and Random Forest), from which a base of data that allows the training of two neural networks feed-forward backpropagation, with which we obtain a classification error of 5.4061e−9 and 9.7587e−5 for the neural network of CO and HC respectively.

Keywords : prediction; pollutant emissions; carbon monoxide (CO); non-combustion hydrocarbons (HC); diagnostics; neural networks.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )