Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Similars in SciELO
Share
Ingenius. Revista de Ciencia y Tecnología
On-line version ISSN 1390-860XPrint version ISSN 1390-650X
Abstract
CONTRERAS URGILES, Wilmer Rafael; LEON JAPA, Rogelio Santiago and MALDONADO ORTEGA, José Luis. Predicción de emisiones de co y hc en motores otto mediante redes neuronales. Ingenius [online]. 2020, n.23, pp.30-39. ISSN 1390-860X.
This paper explains the application of RNA (artificial neural networks) for the prediction of pollutant emissions generated by mechanical failures in ignition engines, from which the percentage of CO (% carbon monoxide) and the particulate can be quantified. Per million HC (ppm unburned hydrocarbons), through the study of the Otto cycle admission phase, which is recorded through the physical implementation of a MAP sensor (Manifold Absolute Pressure). A rigorous sampling protocol and consequent statistical analysis is applied. The selection and reduction of attributes of the MAP sensor signal is made based on the greater contribution of information and significant difference with the application of three statistical methods (ANOVA, correlation matrix and Random Forest), from which a base of data that allows the training of two neural networks feed-forward backpropagation, with which we obtain a classification error of 5.4061e−9 and 9.7587e−5 for the neural network of CO and HC respectively.
Keywords : prediction; pollutant emissions; carbon monoxide (CO); non-combustion hydrocarbons (HC); diagnostics; neural networks.