SciELO - Scientific Electronic Library Online

 
 issue21FUNCTIONALIZED ENAMEL OF CERAMIC TILES BY SOL GEL TECHNIQUE (REVIEW)APPLICATION OF FEED-FORWARD BACKPROPAGATION NEURAL NETWORK FOR THE DIAGNOSIS OF MECHANICAL FAILURES IN ENGINES PROVOKED IGNITION author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Ingenius. Revista de Ciencia y Tecnología

On-line version ISSN 1390-860XPrint version ISSN 1390-650X

Abstract

IZQUIERDO-TORRES, Ismael F.; PACHECO-PORTILLA, Mario G.; GONZALEZ-MORALES, Luis G.  and  ZALAMEA-LEON, Esteban F.. PHOTOVOLTAIC SIMULATION CONSIDERING BUILDING INTEGRATION PARAMETERS. Ingenius [online]. 2019, n.21, pp.21-31. ISSN 1390-860X.  https://doi.org/10.17163/ings.n21.2019.02.

This research calibrates and validates a model for monocrystalline photovoltaic systems in SAM (System Advisor Model) for power generation simulation, considering the meteorological characteristics of Cuenca, Ecuador, close to the equatorial line. The electrical performance is calculated by arranging photovoltaic systems with specific characteristics, with inclinations that respond to conventional local roofing and different orientations. Efficiency is calculated with in-situ measurements over a period of 18 days. Meteorological data were used to calibrate a weather file for the year 2016. Annual yields are estimated according to inclination and orientation, and technical characteristics of the photovoltaic system. Losses are detected due to dirt accumulation and increase in temperature of the panels. The model is validated by linear regression, by comparing the simulated values with the data obtained from in-situ measurements of a reference panel deployed horizontally. The results show an average efficiency loss of 2,77% for dirt conditions and up to 30% for temperature increases. The validation of the model showed a determination coefficient R2=0,996 and a normalized Root Mean Square Error (RMSE) of 8,16%. It is concluded that, because of the particular latitude of the study site, unlike most of the planet, the provision of photovoltaic panels in any orientation considering low slopes, does not significantly reduce the annual power generation performance.

Keywords : Monocrystalline; Photovoltaic Simulation; SAM; Renewable Energies.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )