SciELO - Scientific Electronic Library Online

vol.11 número1COSTO ESTIMADO DE ELECTRICIDAD CON HORIZONTE DE TIEMPO PARA MICRO REDES BASADO EN POLÍTICAS DE RESPUESTA A LA DEMANDA SOBRE EL PRECIO REAL DE ENERGÍAImpacto del Ecodriving sobre las emisiones y consumo de combustible en una ruta de Quito índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay articulos similaresSimilares en SciELO


Enfoque UTE

versión On-line ISSN 1390-6542versión impresa ISSN 1390-9363


ORELLANA,, Marcos  y  CEDILLO, Priscila. Outlier detection with data mining techniques and statistical methods. Enfoque UTE [online]. 2020, vol.11, n.1, pp.56-67. ISSN 1390-6542.

The detection of outliers in the field of data mining (DM) and the process of knowledge discovery in databases (KDD) is of great interest in areas that require support systems for decision making. A straightforward application can be found in the financial area, where DM can potentially detect financial fraud or find errors produced by the users. Thus, it is essential to evaluate the veracity of the information, through the use of methods for the detection of unusual behaviors in the data. This paper proposes a method to detect values ​​that are considered outliers in a database of nominal type data. The method implements a global algorithm of "k" closest neighbors, a clustering algorithm called k-means and a statistical method called chi-square. These techniques have been implemented on a database of clients who have requested a financial credit. The experiment was performed on a data set with 1180 tuples, where, outliers were deliberately introduced. The results showed that the proposed method is able to detect all the outliers entered.

Palabras clave : outlier; data mining; KNN; chi-square; financial fraud.

        · resumen en Español     · texto en Español     · Español ( pdf )