SciELO - Scientific Electronic Library Online

vol.5 issue3Influence of wind gusts in power quality on wind farms author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Enfoque UTE

On-line version ISSN 1390-6542Print version ISSN 1390-9363


TUSA, Eduardo et al. Comparison of machine learning algorithms for detecting coral reef. Enfoque UTE [online]. 2014, vol.5, n.3, pp.45-56. ISSN 1390-6542.

This work focuses on developing a fast coral reef detector, which is used for an autonomous underwater vehicle, AUV. A fast detection secures the AUV stabilization respect to an area of reef as fast as possible, and prevents devastating collisions. We use the algorithm of Purser et al. (2009) because of its precision. This detector has two parts: feature extraction that uses Gabor Wavelet filters, and feature classification that uses machine learning based on Neural Networks. Due to the extensive time of the Neural Networks, we exchange for a classification algorithm based on Decision Trees. We use a database of 621 images of coral reef in Belize (110 images for training and 511 images for testing). We implement the bank of Gabor Wavelets filters using C++ and the OpenCV library. We compare the accuracy and running time of 9 machine learning algorithms, whose result was the selection of the Decision Trees algorithm. Our coral detector performs 70ms of running time in comparison to 22s executed by the algorithm of Purser et al. (2009).

Keywords : Coralbot; coral reef; machine learning; Gabor Wavelets filters; OpenCV..

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )