SciELO - Scientific Electronic Library Online

vol.5 número2Un modelo matemático para la reducción del tiempo de compostaje índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay articulos similaresSimilares en SciELO


Enfoque UTE

versión On-line ISSN 1390-6542versión impresa ISSN 1390-9363


VALDES, Marcia M. Lastre; ALEAGA, Arlys M. Lastre  y  VIDAL, Gelmar García. Artificial Neural Networks in the prediction of insolvency. A paradigm shift to traditional business practices recipes. Enfoque UTE [online]. 2014, vol.5, n.2, pp.38-58. ISSN 1390-6542.

In this paper a review and analysis of the major theories and models that address the prediction of corporate bankruptcy and insolvency is made. Neural networks are a tool of most recent appearance, although in recent years have received considerable attention from the academic and professional world, and have started to be implemented in different models testing organizations insolvency based on neural computation. The purpose of this paper is to yield evidence of the usefulness of Artificial Neural Networks in the problem of bankruptcy prediction insolence or so compare its predictive ability with the methods commonly used in that context. The findings suggest that high predictive capabilities can be achieved using artificial neural networks, with qualitative and quantitative variables.

Palabras clave : Neural Networks; Petri nets; Insolvency; Bankruptcy..

        · resumen en Español     · texto en Español     · Español ( pdf )