SciELO - Scientific Electronic Library Online

 número34Inteligencia Nacional Argentina: funcionalidad y presupuesto. Sus impactos en la cultura de inteligencia (1989-2022)El acuerdo comercial con la Unión Europea: ¿derrota del movimiento antineoliberal en Ecuador? índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay articulos similaresSimilares en SciELO


URVIO Revista Latinoamericana de Estudios de Seguridad

versión On-line ISSN 1390-4299versión impresa ISSN 1390-3691


GELVEZ-FERREIRA, Juan-David; NIETO-RODRIGUEZ, María-Paula  y  ROCHA-RUIZ, Carlos-Andrés. Predicting Crime in Middle-Size Cities. A Machine Learning Model in Bucaramanga, Colombia. URVIO [online]. 2022, n.34, pp.82-98. ISSN 1390-4299.

The use of technology to prevent and respond to citizen security challenges is increasingly frequent. However, empirical evidence has been concentrated in major cities with large amounts of data and local authorities' strong capacities. Therefore, this investigation aims to capture a series of policy recommendations based on a machine learning crime prediction model in an intermediate city in Colombia, Bucaramanga (department of Santander). The model used signal processing for graphs and an adaptation of the TF-IDF text vectorization model to the space-time case, for each of the cities’ neighborhoods. The results show that the best crime prediction outcomes were obtained when using the models with spatial relationships of graphs by weeks. Evidence of the difficulty in predictions based on the periodicity of the model is found. The best possible prediction (with available data) is weekly prediction. In addition, the best model found was a KNN classification model, reaching 59 % of recall and more than 60 % of accuracy. We concluded that crime prediction models are a helpful tool for constructing prevention strategies in major cities; however, there are limitations to its application in intermediate cities and rural areas in Colombia, which have little statistical information and few technical capabilities.

Palabras clave : crime; crime prevention; Colombia; data analysis; police.

        · resumen en Español | Portugués     · texto en Español     · Español ( pdf )