Introducción
En la ciudad de Cuenca, el Gobierno municipal ha impulsado el desarrollo del programa Barrio para Mejor Vivir (BMV), con el propósito de mejorar la cobertura, calidad y cantidad de los servicios públicos que son de pertinencia del Gobierno autónomo descentralizado (GAD) y sus empresas municipales. El objetivo de esta inversión pública, que data de 2005, ha sido la de
mejorar la calidad de vida de los habitantes de la ciudad de Cuenca, en particular, de los sectores de bajos ingresos económicos, proveyendo a los barrios urbanos carenciados de infraestructura integral como: servicios de agua, alcantarillado, vías pavimentadas, aceras, drenajes, alumbrado, redes de telecomunicaciones y espacios verdes (Corporación Andina de Fomento CAF, 2014, p. 2).
La municipalidad ha ejecutado, desde entonces, dos fases del programa BMV: la primera, con una inversión de 60 millones de dólares, de los cuales 42 millones aportó la CAF y 18 millones el GAD de Cuenca. Con esta inversión se mejoraron 890 mil metros cuadrados (m2) de calles y calzadas de barrios urbanos y cabeceras rurales de sectores vulnerables y bajos ingresos económicos (CAF, 2015). En la segunda fase, que inició en 2015, la inversión fue de 92,9 millones de dólares, de los cuales la CAF financió 60 millones, mientras que la municipalidad aportó 32,98 millones. Así, se buscaba beneficiar a cerca de 28 mil predios frentistas ubicados en las parroquias Yanuncay, El Batán, Cañaribamba, Monay, Totoracocha, Machángara, Bellavista y Sucre, con el mejoramiento de 140 km de infraestructura vial, 50 km de pavimento rígido, la construcción de 420 mil m 2 de bordillos y aceras peatonales, señalización horizontal y vertical, ejecución de 20 parques y espacios verdes y construcción y mantenimiento de redes y sistemas de agua potable, alcantarillado, red eléctrica telecomunicaciones, alumbrado y semaforización (CAF, 2014; GAD Cuenca, 2015).
Este tipo de políticas públicas locales se inserta en una discusión mucho más amplia, como es la prestación de los servicios públicos. En el caso ecuatoriano, es responsabilidad del Estado, en el marco del cumplimiento de los derechos constitucionales, garantizar la distribución justa, equitativa y solidaria del presupuesto y la participación de las personas en la agenda y ejecución del mismo (Constitución de la República del Ecuador CRE, 2008, art. 85). Desde el modelo de Estado planificador esto asegura la regularidad, continuidad y neutralidad en la prestación de servicios mediante la inversión y la política pública (Gimeno, 2017; Albuja, 2021). No obstante, existe una correlación entre la calidad de vida de las personas (Orellana y Marshall, 2017), el crecimiento económico y la inversión privada difícil de obviar (Torres et al., 2019). De acuerdo con Albuja (2021), las iniciativas económicas y privadas son vitales en el cumplimiento de la oferta de servicios públicos.
De igual manera, la discusión sobre los servicios públicos se enmarca en el tema del gasto y la inversión. A nivel regional, países como Argentina, Bolivia, Brasil y México en la década de 1980 optaron por reducir el gasto y la inversión pública, la que trajo consigo la privatización de las empresas públicas y la liberación de la economía (Fishlow, 1990). Esta crisis económica redujo el rol del Estado en la creación de infraestructura y formación de capital físico (Rodrik, 2016), con un coste social considerable en términos de políticas y derechos. De acuerdo con Lucas (1988) y Barro (1990), la disminución de esta inversión pública afectó la creación de infraestructura socio-económica que funcionaba como complemento de la inversión privada, ya que creaba las condiciones que estimulaban el gasto particular, y no necesariamente se constituía en un sustituto como se planteaba desde la teoría ortodoxa.
Una política expansiva, que consiste en mayor gasto en la inversión pública, mantiene efectos directos sobre el crecimiento económico de un país (Fondo Monetario Internacional FMI, 2015; Banco Interamericano de Desarrollo BID, 2018). Si el gasto de capital es destinado a la creación de infraestructura, generará, entonces, mayores oportunidades, ya que además de ser un impulso económico para el desarrollo local, se convierte en un factor de integración, conecta a las personas y les permite acceder a servicios de calidad (Banco Mundial, 2017; FMI, 2020). Esto fue lo que sucedió con el programa BPM, que buscó mejorar la infraestructura de uso comunitario mediante la inclusión solidaria y equitativa del capital humano, siendo uno de sus componentes transversales la participación ciudadana como una obligación normativa en la toma de decisiones.
La inversión pública debe mantener características productivas y lograr incrementos de la demanda agregada que se traduzcan en niveles de ahorro para el sector privado y puedan financiar su propia inversión, gasto y generen nuevos tributos que puedan retornar a la inversión pública (Lin, 1994; Aschauer, 1989). Esta inversión debe orientarse al sector estratégico para que alcance mayor significancia (Cachaga et al., 2020) y apuntar a crear la infraestructura mínima que logre propiciar un crecimiento económico mediante la generación de externalidades positivas que incentiven la inversión privada (Hernández, 2010), mas no que financien el consumo público y privado, castigando la inversión.
Es necesaria la implementación de políticas que fomenten la productividad y eliminen las deficiencias estructurales en cuanto a la inversión (Ortiz, 2007; García-Alba y Soto, 2004), sobre todo en el momento en que el financiamiento es externo y requiere mayores y mejores procesos productivos. Hernández et al. (2021) sugieren que es necesario discutir la pertinencia del endeudamiento público destinado a la inversión y gasto como estímulo a la actividad económica, debido a que la capacidad de endeudamiento de una economía en crecimiento depende de los ingresos fiscales que se puedan obtener para financiar el gasto en inversión pública. Tenemos entonces que a escala regional el BID y la CAF invierten y financian proyectos de desarrollo multilateral, alineados con los Objetivos de Desarrollo Sostenible (ODS) de las Naciones Unidas, cuyas metas son erradicar la pobreza, proteger el planeta y asegurar la prosperidad para todas las personas.
Existen experiencias mundiales de programas de inversión para mejorar la infraestructura económica y social, como el caso de Dhaka en Bangladesh (Chowdhury y Amin, 2006) y Mumbai en India (Takeuchi et al., 2008). Investigaciones académicas, más regionales, se refieren a las metodologías para la evaluación de los programas de mejoramiento de la infraestructura social, como el caso de Jaitman y Brakarz (2013) para las favelas de Río de Janeiro y las comunas de Medellín. Estos autores, por ejemplo, utilizan la metodología de Diferencias en Diferencias (DD) para evidenciar efectos positivos relacionados con la cobertura de agua, saneamiento y recolección de basura y alfabetismo, sobre todo, en los cuartiles más pobres de la población.
En Buenos Aires la Subsecretaría de Desarrollo Urbano y Vivienda adscrita al Ministerio de Planificación Federal (2011) utiliza el análisis estadístico Propensity Score Matching (PSM) y DD para estudiar los efectos del Programa Mejora tu Barrio II (Promeba II). Encuentran un impacto positivo y tangible en las condiciones de hábitat familiar y comunitario, sin embargo, el programa no alcanza un impacto real en la reducción de la pobreza ni en la mejora de las condiciones de salud de los habitantes beneficiarios del programa.
A escala nacional, los GAD cuentan con programas similares que buscan promover una mejor calidad de vida de las personas. En este ámbito, en Cuenca, a partir de 2005, se han diseñado y ejecutado programas de mejoramiento de barrios cuyo objetivo consiste en mitigar los déficits de infraestructura pública y mejorar las condiciones físicas del entorno, generando un incremento en el patrimonio de sus propietarios ya sea mediante la revalorización en el área construida de su vivienda o en el valor del suelo (Barreto et al., 2017). Sin embargo, no es posible establecer a priori la efectividad del programa, por lo cual resulta necesaria una evaluación. El Estado, al utilizar un gasto público en insumos productivos y no en insumos corrientes, genera las condiciones necesarias para impulsar proyectos privados de inversión que mantendrán sus propias fuentes de financiamiento y niveles de rentabilidad, provocando incrementos graduales de la riqueza nacional neta (Hernández, 2010).
En ese contexto, se argumenta que existe un efecto causal positivo en las condiciones socio-económicas de los propietarios de los predios intervenidos, atribuido al programa BPV, fase II, que se reflejan en un incremento del avalúo del m 2 tanto en el suelo como en el área construida, provocando un efecto indirecto o derrame de esta política sobre otros indicadores socio-financieros en la economía local. Se propone por objetivo determinar el nivel de incremento de este avalúo entre 2013-2017, período en el que se ejecutó el último programa. Además, los datos son actuales así como se tiene disponibilidad de la información. Al momento, no se cuenta con una evaluación del programa, por lo que es necesario determinar la relación entre la política aplicada y los efectos, mediables por el impacto de la inversión sobre los valores del m 2 del suelo y del área construida.
Metodología y métodos
Con el propósito de probar la robustez de los datos se empleó una combinación de modelos cuasiexperimentales para resolver el posible sesgo que se produce al seleccionar e incluir una variable en la investigación por sus características observables sin tomar en cuenta las inobservables y no tener reglas de asignación claras (Lee, 2005). Se emplearon métodos de evaluación de programas de política económica, como DD y Diferencias en Diferencias Emparejadas (DDE) y la técnica estadística de Propensity Score Matching (PSM), que admiten la obtención de un grupo de tratamiento (personas que participan de la política pública) y otro de control (personas que no participan de la política pública). Sobre estos grupos se estiman los efectos del programa BPV, fase II, en el valor del suelo y del área construida de los barrios intervenidos en Cuenca.
Desde la técnica, autores como Lee (2005), Joshua y Pischke (2008) y Shahidur et al. (2010) señalan que el efecto promedio del tratamiento sobre los tratados (ATET, por sus siglas en inglés), que es el valor promedio de los impactos de la política sobre los grupos de tratamiento y control, se estima mediante la siguiente expresión:
Ecuación en la que:
En la práctica, es factible obtener los datos o el estado actual de las variables de resultado de las zonas beneficiarias del programa (primer término de la ecuación 1). Sin embargo, no es posible observar el estado contrafactual de manera directa (segundo término de la ecuación 1), ya que no se conocen los valores del suelo y área construida del mismo barrio, en el caso de que no haya sido intervenido. Por lo tanto, el objetivo consiste en estimar estos valores de manera precisa para así obtener el efecto real del programa (Bernal et al., 2011). Para ello se recurre a varias metodologías que siguen a continuación:
Método de Diferencias en Diferencias (DD)
El método DD estima el efecto promedio del programa (ATET) sobre el resultado (valor del m 2 del suelo y área construida en dólares), usando una doble diferencia1 de acuerdo con la siguiente expresión (Joshua y Pischke, 2008):
Ecuación en la que:
El efecto del programa, expresado en la ecuación 2, se puede estimar mediante la ecuación 3 (Lee, 2005) que sigue a continuación. Del mismo modo, se debe tener en cuenta que el supuesto principal de esta metodología es que los factores no observables son constantes en el tiempo, es decir, que las unidades analizadas deberían mantener una tendencia igual (paralela) de sus factores en ausencia del tratamiento (García, 2011).
En la que:
Método Propensity Score Matching (PSM)
Este método construye un grupo de control similar al grupo de tratamiento en cada una de las características observables de los barrios. Con ello, se estima el contrafactual evitando el problema de dimensionalidad (Shahidur et al., 2010). Se calcula el puntaje de propensión de que un barrio sea seleccionado para participar en el programa y empareja a las unidades del grupo de tratados y no tratados (Lee, 2005). Esta probabilidad se estima mediante un modelo logit o probit,2 dado por la siguiente ecuación:
P(D=1|X) (4)
Ecuación en la que
X=Toma el valor de 1 si el barrio i recibió el tratamiento o 0 en el caso contrario
X= Co-variable
En este método la propensión se encuentra en función de una serie de covariables
Método Dobles Diferencias Emparejadas (DDE)
Para obtener unas pruebas estadísticas emparejadas en datos de pares coincidentes, se estima el ATET de DDE mediante la siguiente ecuación (Moncada et al., 2018):
Datos y variables
Las variables utilizadas en esta investigación y su forma de medición, tanto dependientes como las independientes o covariables, se muestran en la tabla 1. Los datos, que consisten en una muestra de 27 720 predios intervenidos, fueron obtenidos de la Unidad Ejecutora de Proyectos (UEP) y la Unidad de Avalúos y Catastros (UAC) del GAD de Cuenca, tanto de los archivos documentales de los predios del área urbana de la ciudad y de la información acerca del programa BMV, para 2013 (ex ante) y 2017 (ex post).
En la tabla 2 se observa las unidades de análisis y su distribución como grupos beneficiarios o no en la implementación del programa BMV. Los datos evidencian que, del total de predios observados, el 19,96 % del suelo y el 18,46 % de área construida pertenecen al grupo de tratamiento, mientras que el 80,04 % del suelo y el 81,54 % de área construida son parte del grupo de control. Esto garantiza la existencia de un buen número de unidades no participantes en este tipo de estudio al momento de realizar el matching, y, por tanto, una confiable estimación del efecto de la política pública implementada.
Las tablas 3 y 4 muestran los descriptivos de cada una de las covariables utilizadas, tanto para el suelo como para las áreas construidas, asimismo, las medias de las diferentes variables y la diferencia que existe en los promedios entre el grupo de tratamiento y el grupo de control. Se consideraron, además, la variabilidad de los datos con respecto a la media y la confianza estadística de cada una de las covariables utilizadas. Los valores referenciados para el cálculo son los que constan en la tabla 1.
Fuente: datos la UEP y la UAC del GAD de Cuenca (2021).
Elaboración: propia de los autores (2022).
Nota: valor p: *** p < 0,01; **p<0,05; * p < 0,1
Se observa que, en promedio, casi todas las características observables del suelo y áreas construidas son distintas en lo estadístico entre las zonas de tratamiento y control. Escapan de esta conclusión en el suelo la variable de distancia a centro de salud, cuyos valores no son significativos en lo estadístico. Además, es necesario evidenciar que la variable de uso de equipamiento comunal tiene un nivel de significancia del 0,1 y la variable de abastecimiento de agua con un nivel de significancia del 0,05. Todas las demás variables se encuentran con un p-value menor al 0,01. En cuanto al área construida, la variable del uso de equipamiento comunal no presenta significancia estadística. Por su parte, la variable de abastecimiento de agua muestra una significancia de 0,05. En cambio, el resto de variables muestran una significancia estadística menor a 0,01.
Fuente: datos la UEP y la UAC del GAD de Cuenca (2021).
Elaboración: propia de los autores (2022).
Nota: valor p: *** p < 0,01; **p<0,05; * p < 0,1
La tabla 5 muestra los valores del suelo y del área construida tanto en
Fuente: datos la UEP y la UAC del GAD de Cuenca (2021).
Elaboración: propia de los autores (2022).
Nota: valor p: *** p < 0,01; **p<0,05; * p < 0,1. Errores estándar entre paréntesis.
Al analizar los diferentes tipos de uso, se observa que en promedio el valor del
Resultados
Determinantes de la probabilidad de ser beneficiario del programa
En la tabla 6 se ilustra el cambio estimado en la variable dependiente en el momento en que la variable independiente cambia en una unidad (efectos marginales) y los determinantes de la probabilidad (covariables) de la unidad de análisis sea beneficiaria del programa BMV mediante un modelo probit no lineal, esto para las variables dependientes ya intervenidas. Se encuentra que, si el suelo cuenta con red de alcantarillado, abastecimiento de agua o el estado de la calzada es inadecuado, entonces hay una alta probabilidad de ser beneficiario del programa. El destino que se le dé al suelo, ya sea para vivienda, comercio y producción de bienes y servicios, no tiene injerencia en la probabilidad de ser beneficiario. Es más, su probabilidad de participación es negativa y relativamente alta. Sin embargo, si el suelo se encuentra cercano de un centro de salud o algún tipo de equipamiento, la probabilidad de no participar o no ser beneficiario del programa disminuye. Similares resultados se observan para el área construida.
De forma adicional, aquellas construcciones más nuevas y con buen estado de conservación tienen mayor probabilidad de ser beneficiarios del programa. Uno de los factores determinantes es que se cuenta con red de alcantarillado, puesto que aumenta la probabilidad de ser beneficiario en 13,1% y 14, 7% para el suelo y el área construida, de forma respectiva.
Fuente: datos la UEP y la UAC del GAD de Cuenca (2021).
Elaboración: propia de los autores (2022).
Nota: valor p: *** p < 0,01; **p<0,05; * p < 0,1.
En los dos casos, el uso de equipamiento comunal no muestra significancia estadística en la probabilidad de ser o no beneficiario del programa, mientras que, para el área construida, la covariable de calzada no se presenta confiable. Considerando que el programa está destinado a intervenir aquellos barrios con deficiencia de infraestructura, el signo esperado de las distancias y de los servicios públicos de alcantarillado y abastecimiento de agua no son los previstos. El programa BMV podría estar beneficiando zonas en mejores condiciones de habitabilidad con requerimientos técnicos validados por el Municipio.
Estimación del ATET
Luego de estimados los determinantes para ser beneficiario del programa y obtener el puntaje de propensión (PSM) se procedió a verificar el cumplimiento de los supuestos metodológicos. En el gráfico 1 y 2 se observa que, después del emparejamiento, tanto la mediana como los percentiles 25 y 75 son similares entre la zona de tratamiento y la zona control, por lo tanto, las diferencias existentes antes del tratamiento han desaparecido y, por ende, el balance se cumple.
De este modo, con la muestra de observaciones que no fueron parte de la aplicación de la política e inversión pública, se construyó el grupo de control que cumple con las características mencionadas con anterioridad para aplicar la metodología del PSM. Se logra emparejarlas con la muestra de observaciones que sí fueron objeto de la inversión pública, permitiendo su comparación mediante las características observables de los mismos, verificado en un alto PSM.
El gráfico 3 evidencia que, para las observaciones que integran los grupos de tratamiento y de control, sus características y particularidades son parecidas, en tanto que las diferencias existentes se han minimizado. Esto supone, entonces, que el sesgo de selección ha desaparecido, cumpliéndose el supuesto de soporte común, es decir que las distribuciones de probabilidad del grupo de tratamiento y del grupo de control se superponen entre sí. De esta manera, se garantiza que cada unidad del grupo de tratados se empareje con cada unidad del grupo de no tratados.
Para el método de DD, una vez validada la correcta especificación del modelo, el gráfico 4 indica el supuesto de tendencias paralelas, es decir, el comportamiento de las variables analizadas “antes” del tratamiento, entre los grupos de control y grupos de tratamiento, son iguales. Se verifica entonces que las unidades analizadas mantienen una tendencia igual de sus factores en ausencia del tratamiento. El comportamiento del valor del
Por último, en el gráfico 5 se observa el cumplimiento del supuesto que permite la combinación de las metodologías PSM y DD. Se muestra la densidad antes y después del emparejamiento, detallando que el supuesto de soporte común se cumple debido a que las distribuciones de probabilidad del grupo de tratamiento y del grupo de control se superponen entre sí. Esto garantiza que cada unidad del grupo de tratados se empareje con cada unidad del grupo de no tratados, tanto para la variable de suelo como de área construida.
Una vez cumplidos los supuestos de las metodologías y emparejamientos, se estimó el ATET, cuyos resultados se muestran en la tabla 7. Se evidencia que la variación en el avalúo de los predios en el territorio de tratamiento, debido a la participación en el programa muestra un incremento promedio del 7 % en el valor del
Fuente: datos la UEP y la UAC del GAD de Cuenca (2021).
Elaboración: propia de los autores (2022).
Nota: valor p: *** p < 0.01; **p<0.05; * p < 0.1. Errores estándar entre paréntesis.
En la tabla 8 se evidencia que el programa BMV tiene efectos positivos en el valor del
En cuanto al uso del bien para producción de bienes y servicios, en el área construida se observa un aumento del avalúo del 16,6 %, aunque su significancia estadística baja al 0,1. Para el suelo existe disminución en el avalúo del 3 %, sin embargo, este dato estadísticamente no presenta niveles de confianza válidos. Por último, el valor de los cambios en los avalúos de los bienes, en el momento en que estos se utilizan para actividades de comercio, presenta decrementos del 29,3 % en el caso del suelo, con una significancia estadística del 0,01, mientras que para el área construida el incremento en el avalúo es del 9,4 %, sin embargo, este dato no es confiable en lo estadístico.
Fuente: datos la UEP y la UAC del GAD de Cuenca (2021).
Elaboración: propia de los autores (2022).
Nota: valor p: *** p < 0,01; **p<0,05; * p < 0,1. Errores estándar entre paréntesis.
Discusión
Los resultados mostrados proporcionan evidencia empírica sobre los incrementos y variaciones en los valores de los avalúos, tanto del suelo como del área construida en las zonas intervenidas o beneficiarias del programa BMV en Cuenca. Este incremento debería, además, plantear una revalorización de los activos de los propietarios de los bienes inmuebles, un impulso para la economía local por el efecto derrame de la inversión pública sobre la inversión privada. Los valores obtenidos indican que, en promedio, del total de la variación en el avalúo del suelo, el 7 % se debió a la participación de los predios en el programa BMV. Para el área construida, en promedio, el 4 % del cambio en el avalúo se debió a la aplicación de la mencionada política pública.
Es importante indicar que las variaciones en los avalúos de los predios para el suelo y área construida son diferentes y esta diferencia depende del uso para el que se destina el bien, esto es para uso en vivienda, producción de bienes y servicios y comercial. En el uso para vivienda, tanto el suelo como el área construida, el avalúo presenta una variación positiva del 13,8 % y 8,5 %, de forma respectiva. Ambos resultados son estadísticamente significativos. Para el uso en producción de bienes y servicios, n el caso del suelo, existe una variación negativa del 3,6 % aunque su resultado no resulta confiable. Para el área construida la variación positiva es de 16,6 % con un p-value del 0,1.
Para el uso comercial, el suelo presenta una variación negativa que es estadísticamente significativa del 29,3 % y para el área construida una variación positiva el 9,4 %, aunque sin evidencia estadística. Los hallazgos ponen en entredicho el objetivo de la inversión pública, al menos en cuanto a incrementos en avalúos de los bienes. Estos no necesariamente reflejan aumentos en el valor los activos de los propietarios, al menos no en el momento en que el uso de los bienes es para actividades de comercio, significando una posible ralentización de la economía. Esta posición mostraría una débil sostenibilidad de la política pública, sobre todo, por el hecho de no haberse implementado medidas correctivas necesarias para que la inversión, mediante este programa, produzca externalidades o derramas productivas sobre la actividad económica local.
Estos resultados podrían explicarse a partir de lo siguiente: la aplicación de las mejoras significa mayores costos para las actividades productivas, siendo estas menos atractivas desde la demanda. Las adquisiciones de terrenos e infraestructura para tareas económicas se mostrarían poco alentadoras, incidiendo en el desarrollo productivo. Esta posibilidad toma mayor sentido al observar los resultados en cuanto al uso de los bienes para vivienda y entendiendo, además, que el objetivo y propósito del programa es el de mejorar las condiciones físicas de los barrios. La variación positiva resulta lógica puesto que la inversión se enfoca en mejoras para el diario vivir de las personas y el incremento de su patrimonio. Queda la inquietud de que si el costo-beneficio de este incremento en función de la inversión realizada se compensa.
Asimismo, resultaría interesante conocer el efecto del programa sobre variables de tipo social aplicadas a los residentes de las zonas intervenidas. Se debe medir el impacto real desde el cambio en las condiciones de vida de los habitantes beneficiarios de la política e inversión pública a partir de la evaluación de la asignación de recursos, en función de solventar necesidades sociales, midiendo su calidad y eficiencia. Armendariz y Carrasco (2019) indican que existe evidencia que señala la ineficiencia significativa en la calidad y cobertura del capital público, que finalmente genera una mala asignación de recursos, baja calidad de los proyectos y sobrecostos en su implementación.
Serebrisky et al. (2020) resaltan la necesidad de determinar las eficiencias en asignaciones de capital y trabajo, sobre todo, en el momento en que se trata de inversiones en infraestructura que requieren un uso intensivo de capital y que, además, generan empleo. Por tanto, en términos de inversión pública, Tandberg y Allen (2020) recomiendan orientar los recursos a aquellos proyectos que generen mayores beneficios socioeconómicos, evitando retrocesos a nivel local y regional.
Conclusiones y recomendaciones
La política pública se refiere al conjunto de orientaciones que un Gobierno brinda a sus programas y a la inversión durante su período de acción, buscando resolver necesidades de carácter social, reduciendo brechas de desigualdad y propendiendo a la estabilización macroeconómica. Toda política necesita ser evaluada con el propósito de conocer su alcance e impacto que tiene sobre algunas de las variables sociales a las que se pretende estimular. El programa BMV en Cuenca en el período 2013-2017 cumplió con los efectos promedio esperados a corto plazo. En la zona urbana de la ciudad, aquellos predios intervenidos tienen en promedio un incremento del 7 % en el valor del
Se logra determinar que, además de las mejoras en la infraestructura de los barrios, existe un incremento en los avalúos y, por ende, en los activos de los propietarios. Faltaría determinar el coste-beneficio de este incremento. Sin embargo, resta establecer el nivel de impacto en cuanto a las condiciones de vida de las personas y el nivel del efecto derrame de este gasto público sobre la economía local, siendo necesario realizar evaluaciones de índole socioeconómico que determinen la eficiencia y eficacia de la inversión realizada.
Por otra parte, uno de los determinantes en la probabilidad de que un barrio sea intervenido por el programa consiste en la disponibilidad de servicios públicos (alcantarillado y abastecimiento de agua), debido a que el programa no se aplica a ciertas zonas con problemas técnicos, limitando el acceso a los sectores vulnerables. Esto debería revisarse en función de cumplir con el propósito último de la inversión y gasto público, que es el de cerrar diferencias y brechas entre la población, atendiendo a los sectores más vulnerables. Al respecto, se determinó que existe preferencia a que en el programa participen aquellos predios que cuentan con servicios básicos, es decir, es difícil realizar obras de asfalto de calzada y bordillos si con antelación no se ha garantizado la atención en agua potable y alcantarillado.
Considerando que el programa está destinado a intervenir aquellos barrios con deficiencia de infraestructura, el signo esperado de las distancias y de los servicios públicos de alcantarillado y abastecimiento de agua no son los esperados. El programa BMV podría estar beneficiando zonas en mejores condiciones de habitabilidad con requerimientos técnicos validados por el municipio local. En este caso, se debería reconsiderar la orientación de la inversión pública y sus prioridades: que atiendan a zonas rurales que carecen de servicios como agua potable, alcantarillado, internet y telefonía. Surge la duda, entonces, si es necesario tener barrios con buenas vías o barrios con mayor dotación y alcance de servicios básicos para que el programa pueda ser implementado en cierto sector.
La discusión se extiende puesto que se debe considerar varias aristas, como la cobertura del servicio de agua potable y alcantarillado en la ciudad, las necesidades de barrios suburbanos y rurales, impulso a la economía privada desde la inversión pública y las condiciones de vida de la población, entre otras. Estos elementos y otros más requieren que los recursos sean invertidos de manera adecuada. Con eficiencia y eficacia, priorizando necesidades, pero, además, teniendo herramientas que ayuden a tomar decisiones correctas. Es necesaria la evaluación de la política del BVM en función de garantizar que el recurso sea correctamente implementado y genere el mayor beneficio social. Es importante contar con bases de datos actualizadas y confiables, de mayor alcance y disponibles para realizar el seguimiento y evaluación de este y otro tipo de programas de desarrollo y verificar la existencia o no de efectos deseados a corto y largo plazo para variables económicas y sociales. De esta manera, se tendría mayor claridad de los efectos de la inversión pública, que, en el caso de ser escasa, resulta imperativo su correcto uso y destino.