SciELO - Scientific Electronic Library Online

 
 número26Influencia del recubrimiento de cromato de zinc en la corrosión de los aceros ASTM A-500 y A-500 galvanizado expuestos en una cámara de niebla salinaModelo simplificado de una interfaz de conexión a la red basada en un convertidor electrónico de potencia para estudios de red en régimen dinámico índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Ingenius. Revista de Ciencia y Tecnología

versión On-line ISSN 1390-860Xversión impresa ISSN 1390-650X

Resumen

PEREZ-AGUILAR, Daniel; RISCO-RAMOS, Redy  y  CASAVERDE-PACHERREZ, Luis. Transfer Learning for Binary Classification of Thermal Images. Ingenius [online]. 2021, n.26, pp.71-86. ISSN 1390-860X.  https://doi.org/10.17163/ings.n26.2021.07.

The classification of thermal images is a key aspect in the industrial sector, since it is usually the starting point for the detection of faults in electrical equipment. In some cases, this task is automated through the use of traditional artificial intelligence techniques, while in others, it is performed manually, which can lead to high rates of human error. This paper presents a comparative analysis between eleven transfer learning architectures (AlexNet, VGG16, VGG19, ResNet, DenseNet, MobileNet v2, GoogLeNet, ResNeXt, Wide ResNet, MNASNet and ShuffleNet) through the use of fine-tuning, in order to perform a binary classification of thermal images in an electrical distribution network. For this, a database with 815 images is available, divided using the 60-20-20 hold-out technique and cross-validation with 5-Folds, to finally analyze their performance using Friedman test. After the experiments, satisfactory results were obtained with accuracies above 85 % in 10 of the previously trained architectures. However, the architecture that was not previously trained had low accuracy; with this, it is concluded that the application of transfer learning through the use of previously trained architectures is a proper mechanism in the classification of this type of images, and represents a reliable alternative to traditional artificial intelligence techniques.

Palabras clave : fine-tuning; Friedman test; pre-training; thermal images; transfer learning.

        · resumen en Español     · texto en Español     · Español ( pdf )