SciELO - Scientific Electronic Library Online

 
vol.8 número5Uso de la tecnología de contabilidad distribuida por los bancos centrales: Una revisiónEvaluación de riesgos y modelación de soluciones técnicas para filtraciones en presas de tierra índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Enfoque UTE

versión On-line ISSN 1390-6542versión impresa ISSN 1390-9363

Resumen

NAJARRO, Rodolfo; LOPEZ, Ringo; RACINES, Ruth Elizabeth  y  PURIS, Amilkar. An Hybrid Genetic Algorithm to Optimization of Flow Shop Scheduling Problems under Real Environments Constraints. Enfoque UTE [online]. 2017, vol.8, n.5, pp.14-25. ISSN 1390-6542.  https://doi.org/10.29019/enfoqueute.v8n5.176.

This paper aims to analyzing the effect of the inclusion of several constraints that have negative influence in the real manufacturing productions. For the solution of the scheduling problem treated in this paper, known as Flow Shop Scheduling, an efficient Genetic Algorithm is introduced combined with the Variable Neighborhood Search for problems of n tasks and m machines minimizing the total completion time or makespan. Release date, dependent setup-times and transport times are entered. These are common restrictions that can be found in multiple manufacturing environments where there are machines, tools, and a set of jobs must be processed in these, following the same flow pattern. The computational experiments carried out on a set of instances of problems of different sizes of complexity show that the proposed hybrid metaheuristic achieves high quality solutions comparable to the optimum ones reported.

Palabras clave : hybrid genetic algorithm; scheduling; flow shop; variable neighborhood search.

        · resumen en Español     · texto en Español     · Español ( pdf )