SciELO - Scientific Electronic Library Online

 
vol.45 número1Evaluación del Estado del Aislamiento en Transformadores a partir de Mediciones IFRA de Alto Voltaje índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Revista Politécnica

versión On-line ISSN 2477-8990versión impresa ISSN 1390-0129

Resumen

PRADO, Alvaro; HERRERA, Marco  y  MENENDEZ, Oswaldo. Levantamiento Inteligente y Estabilización Robusta de un Sistema de Péndulo Invertido Rotatorio via Control Predictivo Basado en Modelo No-lineal y Tubos. Rev Politéc. (Quito) [online]. 2020, vol.45, n.1, pp.49-64. ISSN 2477-8990.  https://doi.org/10.33333/rp.vol45n1.05.

^a

El propósito de este trabajo es presentar un nuevo esquema de control robusto basado en un modelo no-lineal aplicado a un sistema de péndulo invertido rotacional. El péndulo rotacional está compuesto por un brazo mecánico unido a un péndulo de movimiento libre (ortogonal al brazo), conocido como el péndulo Furuta. En principio, un controlador Fuzzy permite que la barra del brazo robótico levante el péndulo giratorio a través del movimiento oscilatorio y alcance automáticamente la posición de equilibrio superior en un rango de operación de estabilización prescrito. Después de que el péndulo alcanza el rango de operación, un sistema de conmutación inteligente permite la transición entre el controlador basculante y un controlador predictivo robusto para mantener la posición angular del péndulo alrededor de la posición vertical ascendente. Para lograr un desempeño robusto, un marco centralizado del controlador propuesto combina un tres acciones de control. El primero compensa las perturbaciones utilizando la trayectoria de regulación - control de adelanto. La segunda acción de control corrige los errores producidos por la discrepancia de modelado. El tercer controlador asegura robustez en el sistema de lazo cerrado mientras compensa las desviaciones de las trayectorias de estado con respecto a las nominales (es decir, sin perturbaciones). La estrategia de control proporciona factibilidad robusta a pesar de que las restricciones en la barra del brazo y los actuadores del péndulo son alcanzadas. Dichas restricciones se calculan en línea en base a conjuntos robustos positivamente invariantes caracterizados por conjuntos politópicos (tubos). El controlador propuesto se prueba en una serie de pruebas de simulación y se valida de forma experimental en un entorno de simulación de alta fidelidad que incluye un péndulo invertido giratorio construido con fines educativos. Los resultados muestran que el rendimiento de control robusto se fortalece frente a perturbaciones del sistema de lazo cerrado en comparación con la de los controladores predictivos lineales y no lineales inherentemente robustos.

^les^a

The purpose of this paper is to introduce a new robust nonlinear model-based predictive control scheme applied to a rotational inverted-pendulum system. The rotational pendulum is composed by a mechanical arm attached to a free-motion pendulum (orthogonal to the arm), namely Furuta Pendulum. In principle, a Fuzzy controller enables the robotic arm bar to lift the rotational pendulum through oscillatory swing-up motion up to automatically achieve the upper equilibrium position in a prescribed stabilizing operation range. After the pendulum reaches the operating range, an intelligent control bypass system allows the transition between the swing-up motion controller and a robust predictive controller to maintain the angular position of the pendulum around the upward critical position. To achieve robust performance, a centralized control framework combines a triplet of control actions. The first one compensates for disturbances using the regulation trajectory feedforward control. The second control action corrects errors produced by modelling mismatch. The third controller assures robustness on the closed-loop system whilst compensating for deviations of the state trajectories from the nominal ones (i.e, disturbance-free). The control strategy provides robust feasibility despite constraints on the arm bar and pendulum’s actuators are met. Such constraints are calculated on-line based on robust positively invariant sets characterised by polytopic sets (tubes). The proposed controller is tested in a series of simulations, and experimentally validated on a high-fidelity simulation environment including a rotational inverted-pendulum built for educational purposes. The results show that robust control performance is strengthened against disturbances of the closed-loop system benchmarked to inherently-robust linear and nonlinear predictive controllers.

^len

Palabras clave : .

        · resumen en Español | Inglés     · texto en Español     · Español ( pdf )