7 1 
Home Page  

  • SciELO

  • SciELO


Maskay

 ISSN 1390-6712

MORENO, David. >Desarrollo de un algoritmo en MATLAB para la optimización de la resolución de una tarjeta USRP B210 para aplicaciones SDRadar. []. , 7, 1, pp.31-40. ISSN 1390-6712.  https://doi.org/10.24133/maskay.v7i1.338.

^a

En este documento se analizan las limitaciones y características que tiene la tarjeta USRP (Universal Software Radio Peripheral) B210 para desarrollar aplicaciones de radar definidos por software (SDRadar). Para el desarrollo del algoritmo se utilizó un radar de onda continua modulada en frecuencia (FMCW) que implementa una señal chirp, al considerar que 25 MHz es el máximo ancho de banda que la tarjeta puede proporcionar se obtiene como resultado una resolución de 6 metros. El método utilizado para optimizar la resolución de la tarjeta fue transmitir un determinado número de señales con distintos anchos de banda, lo que resulta en una resolución diferente, al detectar y almacenar el objetivo en una matriz. Después de las pruebas correspondientes el algoritmo estableció que con 14 mediciones con variaciones de ancho de banda de 0.5 MHz, entre cada señal, se obtiene la mayor optimización para mejorar la resolución de la tarjeta. Se obtuvo finalmente dos zonas de optimización, donde la primera zona está limitada por un error de medición menor a 1 metro, y en la segunda zona con un error de medición entre 1 y 2 metros con 69.15% y 30.85% de objetivos detectados respectivamente, lo que determina su efectividad y confiabilidad. Este trabajo ha demostrado que el algoritmo utilizado es útil en aplicaciones SDRadar para detectar objetivos para aplicaciones topográficas o sistemas SAR.

^les^a

This paper analyzes the universal software radio peripherical (USRP) B210 limitations and characteristics to develop applications on Software Defined Radar (SDRadar). The developed algorithm uses a frequency modulated constant wave (FMCW) which implement a chirp signal, taking considering that 25 MHz is the maximum bandwidth that the USRP can provide with a maximum resolution of 6 meters. The method improves the resolution through several signals transmitted with different bandwidths obtaining different resolutions, which were stored in a simple matrix and analyzed. After simulations, it is determined that the 14 measurements done with bandwidth spacing of 0.5 MHz between every signal is the best way to improve the resolution. Finally, two scenarios are described for the optimization procedure, the first scenario is limited with a measurement error less than 1 meter and the second scenario is limited by measurement error between 1 and 2 meters getting a better effectiveness of the measurement under the first scenario with 69.15% of detected objectives compared with the 30.85% of effectiveness of the second one. This paper demonstrates that the algorithm used is useful on SDRadar applications to detect objectives, for topographic applications or SAR systems.

^len

: .

        · | |     · |     · ( pdf )