
Modeling Cloud Infrastructure Provisioning: A Software-as-a-Service Approach 87

Modeling Cloud Infrastructure Provisioning: A
Software-as-a-Service Approach

Sandobalin, Julio 1,∗ ; Iñiguez-Jarrín, Carlos 1

1Escuela Politécnica Nacional, Departamento de Informática y Ciencias de la Computación, Quito, Ecuador

Abstract: Provisioning means making an infrastructure element, such as a server or network device, ready for use.
DevOps community leverages the Infrastructure as Code (IaC) approach to supply tools for cloud infrastructure provision.
However, each provisioning tool has its scripting language, and managing different tools for several cloud providers is
time-consuming and error-prone. In previous work, we presented a model-driven infrastructure provisioning tool called
ARGON, which leverages the IaC approach using Model-Driven Engineering. ARGON provides a modeling language
to specify cloud infrastructure resources and generates scripts to support cloud infrastructure provisioning orchestration.
Since ARGON runs in the Eclipse Desktop IDE, we propose to migrate from an ARGON Desktop to an ARGON Cloud as
a Software-as-a-Service approach. On the one hand, we developed a domain-specific modeling language using JavaScript
Frameworks. On the other hand, we used a Model-to-Text transformation engine through a REST web service to generate
scripts. Finally, we carried out an example by modeling infrastructure resources for Amazon Web Services and then
generating a script for the Ansible tool.

Keywords: Infrastructure as Code, Domain-Specific Language, Cloud Infrastructure Provisioning, Software-as-a-
Services, Model-Driven Engineering

Modelado del Aprovisionamiento de Infraestructura en la Nube:
Un Enfoque de Software como un Servicio

Resumen: Aprovisionar significa hacer que un elemento de la infraestructura, como un servidor o un dispositivo de
red, esté listo para su uso. La comunidad DevOps aprovecha el enfoque de Infraestructura como Código (Infrastructu-
re as Code, IaC) para proporcionar herramientas para el aprovisionamiento de infraestructura en la nube. Sin embargo,
cada herramienta de aprovisionamiento tiene su propio lenguaje de secuencias de comandos, y administrar diferentes
herramientas para varios proveedores de la nube lleva mucho tiempo y es propenso a errores. En trabajos anteriores,
presentamos una herramienta de aprovisionamiento de infraestructura dirigida por modelos llamada ARGON, que apro-
vecha el enfoque de IaC mediante la Ingeniería de Software Dirigida por Modelos. ARGON proporciona un lenguaje
de modelado para especificar los recursos de la infraestructura de la nube y genera scripts para apoyar la orquestación
del aprovisionamiento de la infraestructura de la nube. Dado que ARGON se ejecuta en el IDE de escritorio Eclipse,
proponemos migrar de un ARGON Desktop a un ARGON Cloud como un enfoque de Software-como-un-Servicio. Por
un lado, desarrollamos un lenguaje de modelado específico de dominio utilizando marcos de trabajo de JavaScript. Por
otro lado, utilizamos un motor de transformación de modelo-a-texto a través de un servicio web REST para generar
scripts. Finalmente, llevamos a cabo un ejemplo modelando recursos de infraestructura para Amazon Web Services y
luego generamos un script para la herramienta Ansible.

Palabras claves: Infraestructura como Código, Lenguaje Específico de Dominio, Aprovisionamiento de Infraestructura
en la Nube, Software como un Servicio, Ingeniería de Software Dirigida por Modelos

1. INTRODUCTION

DevOps (Development and Operations) promotes collaboration
between developers and operations staff using a set of values, prin-
ciples, practices, and tools to optimize software delivery time (Far-
ley et al., 2010). The continuous deployment (CD) practice gen-
erates a lot of attention when a critical defect comes to the pro-

duction environment or software artifacts are delivered late. Fur-
thermore, the CD practice is the borderline between developers
and operation staff in the software delivery cycle. In this scenario,
practitioners and researchers use the Infrastructure as Code (IaC)
to support the CD practice and improve the software delivery time.
IaC is an approach to infrastructure automation based on software
development practices (Morris, 2016). The idea behind IaC is to

*julio.sandobalin@epn.edu.ec
Recibido: 10/08/2022
Aceptado: 24/08/2023
Publicado en línea: 14/11/2023
10.33333/rp.vol52n2.09
CC BY 4.0 Revista Politécnica, Noviembre 2023 - Enero 2024, Vol. 52, No. 2

 https://orcid.org/0000-0002-5273-9195
https://orcid.org/0000-0003-1338-7542
https://doi.org/10.33333/rp.vol51n1.05
https://creativecommons.org/licenses/by-nc-sa/4.0/

Julio Sandobalin; Carlos Iñiguez-Jarrín
88

write and execute code to define, update, provision, and destroy
the infrastructure (Brikman, 2019).
Cloud Computing comprises hardware-based services, in which
hardware management is highly abstracted, and the infrastructure
capacity is highly elastic (Buyya et al., 2011). The DevOps com-
munity supplies IaC tools to orchestrate cloud infrastructure pro-
visioning. Each IaC tool uses its files or scripts to define the cre-
ation, update, execution, and destruction of the cloud infrastruc-
ture resources. However, managing scripting languages of differ-
ent IaC tools for several cloud providers is time-consuming and
error-prone. In previous work, we presented ARGON (Sandobalin
et al., 2017a), an infrastructure modeling tool for cloud provision-
ing to address these problems. ARGON leverages the IaC ap-
proach through Model-Driven Engineering (MDE). On the one
hand, ARGON abstracts the complexity of managing the partic-
ularities of cloud providers to define their infrastructure resources
using a domain-specific modeling language called ArgonML (AR-
GON Modeling Language). On the other hand, ARGON generates
scripts by a Model-to-Text (M2T) transformation engine for dif-
ferent IaC tools to support the orchestration of cloud infrastructure
provisioning. ARGON (Sandobalin et al., 2017b) has proven work
suitable in a toolchain for cloud infrastructure provisioning us-
ing DevOps community tools. Furthermore, ARGON (Sandobalin
et al., 2018) supports multi-cloud infrastructure provisioning and
proposes a flexible migration process among cloud providers. Fi-
nally, a family of controlled experiments (Sandobalin et al., 2020)
was carried out to compare ARGON with Ansible as regards their
effectiveness, efficiency, perceived ease of use, perceived useful-
ness, and intention to use.
ARGON works in Eclipse Modeling Framework (Steinberg et
al., 2009). Eclipse is an Integrated Development Environment
(IDE) with multiple programming languages and modeling tools.
Eclipse provides a Desktop IDE and Cloud IDE. The former is in-
stalled, launched, and run locally on a computer. The latter is a
web-based integrated development platform that can be accessed
from different web browsers. Eclipse Desktop IDE has been used
for a long-term period. Nevertheless, Eclipse Desktop IDE has all
problems of desktop applications, such as portability, being lim-
ited by hardware, being restricted to just one machine, requiring
the user to download and install it before using, etc. In contrast,
Eclipse Cloud IDE works through a web browser with advantages
such as users can access through all their devices, portability, less
hardware dependence, fewer hardware and software compatibility
issues, updates and upgrades being more accessible, etc.
Since the advent of Cloud Computing, many software applica-
tions have migrated to one of its services. In this scenario, Eclipse
Cloud IDE provides its environment as a Software-as-a-Services
(SaaS). However, the Eclipse Cloud IDE does not provide all
the programming languages and modeling tools that offer Eclipse
Desktop IDE. Therefore, our main research objective is to migrate
ARGON toward Cloud Computing to provide infrastructure mod-
eling and script generation as a SaaS service. In this scenario, we
migrate ARGON Desktop IDE toward ARGON Cloud IDE to pro-
vide a SaaS approach. We did not use Eclipse Cloud IDE because
it does not provide the necessary tools for developing domain-
specific modeling languages and M2T transformation.
The remainder of this paper is structured as follows: Section 2
discusses related works and identifies the need for modeling the

infrastructure resources as a SaaS service. Section 3 presents AR-
GON Cloud as a SaaS approach. We explain the development of a
domain-specific modeling language using JavaScript Frameworks
and an M2T transformation engine to generate scripts employing a
REST web service. Section 4 introduces an illustrative case study
that shows the feasibility of the ARGON Cloud for modeling in-
frastructure resources and generating scripts. Finally, Section 5
presents our conclusions and future work.

2. RELATED WORK

There has been considerable interest in managing cloud infras-
tructure provisioning in recent years, and several approaches and
strategies have emerged to support it. In this scenario, cloud
providers have tools to define, update, manage, execute, and de-
stroy their infrastructure resources, for instance, CloudFormation
and OpsWorks of Amazon Web Services. Moreover, the DevOps
community has developed several tools to manage the infrastruc-
ture provisioning of different cloud providers, such as Terraform
and Ansible, and tools to install and manage software in existing
servers, such as Chef and Puppet.
Solayman et al. (2023) propose an approach to automate the pro-
vision and orchestration of IoT components on Edge and Cloud
Computing. In this scenario, the authors use DevOps tools to pro-
vision and orchestrate container-based IoT applications through
practices such as continuous integration and deployment.
Neharika et al. (2023) investigate secure infrastructure provision-
ing. This approach achieves secure and automatic infrastructure
provisioning using a source code analysis tool, container security
tool, and Infrastructure as Code (IaC) tools. The IaC scripts of
containers are scanned, and when critical vulnerabilities are not
found, the infrastructure is automatically provisioned using Ter-
raform tool.
Miñón et al. (2022) present the Pangea tool to generate suitable
execution environments for deploying analytic pipelines. The
pipelines are executed on edge, fog, cloud, or on-premise com-
puting settings. First, Pangea provisions infrastructure on demand
if it does not exist. Subsequently, Pangea configures each host op-
erative system, installs dependencies, and downloads the code to
execute. Finally, Pangea deploys the pipelines.
Kartheeyayini et al. (2022) propose an approach for DevOps tools
management using a Domain-Specific Language (DSL) based on
IaC. The DSL model the final state of a provisioning infrastruc-
ture on the cloud and generating the provisioning scripts for Ama-
zon Web Services (AWS). The authors propose moving legacy ap-
plications to a cloud platform by creating infrastructure as code
dynamic infrastructure platforms to deploy and manage different
applications design such as microservices applications, IoT appli-
cations, legacy applications, etc.
Chiari et al. (2022) present a DevOps Modelling Language
(DOML) to describe cloud applications of different cloud
providers and IaC tools. DOML supplies different modeling per-
spectives in a multi-layer approach. DOML describes an ap-
plication, abstract, and concrete infrastructure layer. This ap-
proach supports developers in abstractly defining cloud applica-
tions, mapping software components to infrastructure elements,
and deploying the software application.
Palma et al. (2022) present DEFUSE, a language-agnostic tool

Revista Politécnica, Noviembre 2023 - Enero 2024, Vol. 52, No. 2

Modeling Cloud Infrastructure Provisioning: A Software-as-a-Service Approach 89

for software defect prediction. DEFUSE tool collects and clas-
sifies failure data to enable data correction and then builds ma-
chine learning models to detect defects based on the data classi-
fied. DEFUSE tool supports the IaC practice to enable infrastruc-
ture provisioning through the definition of machine-readable files.
López-Viana et al. (2022) present a proof of concept based on
Cloud Native Computing Foundation (CNCF) tools to check the
feasibility of using GitOps with the Internet of Things (IoT) along
with Edge computing (EC) solutions. The authors found several
drawbacks to using these tools, such as a lack of automatic in-
frastructure provisioning and limitations on the edge devices that
can be supported. Additionally, the authors aim to replicate best
practices used in cloud-native development and operation.
Zhou et al. (2019) designed and implemented a framework called
CloudsStorm to allow developers to easily leverage different cloud
providers’ virtual infrastructure functions (VIF) for programming
their cloud applications. CloudsStorm supports application and
infrastructure programmability at the design, infrastructure, and
application levels. Besides, Clouds Storm also defines infrastruc-
ture provisioning using IaC tools.
Guerriero et al. (2019) present the state of adopting the IaC prac-
tice and the critical software engineering challenges. The authors
carried out semi-structured interviews with senior developers. The
study shows how practitioners adopt and develop the IaC practice
for infrastructure provisioning. Moreover, the study also presents
the advantages and disadvantages of using IaC tools and the prac-
titioner’s needs when dealing with developing, maintaining, and
evolving infrastructure provisions using IaC practice. The findings
establish that the currently available IaC tools are still limited, and
developers feel the need for novel techniques for maintaining IaC
code.
Ferry et al. (2018) present a Cloud Modeling Framework
(CloudMF), which has a domain-specific language for speci-
fying the deployment and provisioning of multi-cloud applica-
tions. CloudFM proposes a Cloud Provider-Independent Model
(CPIM) to define the provisioning and deployment of cloud ap-
plications. Moreover, CloudFM has a Cloud Provider-Specific
Model (CPSM) that uses a model@run-time engine to request
cloud providers a list of available resources to refine the CPIM
into a CPSM.
Casola et al. (2017) provide a DevOps approach to developing
multi-cloud applications (MUSA) with Service Level Agreements
(SLAs). MUSA has a modeler tool to define application archi-
tectures and deployment requirements using a modeling language
based on CAMEL (Rossini, 2015) to define application architec-
tures and deployment requirements.
Nitto et al. (2017) propose a model-driven approach for designing
and executing applications on multiple Clouds (MODAClouds).
On the one hand, Quality of Service (QoS) requirements are de-
fined and specified on the Cloud Independent Model (CIM) level.
On the other hand, cloud-specific characteristics are defined on
the CPIM level. Consequently, the CPSM level specifies a pre-
cise provider and service for the software application, runs QoS
analyses and generates appropriate deployment, monitoring, and
self-adaptation scripts to support the runtime phases.
Chen et al. (2016) developed a model-driven operation service
(MORE) for cloud-based IT systems that automates deployment
and dynamic configuration of software applications. MORE sup-

plies an online modeling editor to specify a topology model, de-
ployment structure, and desired state. MORE transforms the
topology model into executable code for Puppet to deploy virtual
machines, physical machines, and containers.
In summary, current research works have focused on reusing De-
vOps community tools (i.e., IaC Tools) to breach gaps described in
infrastructure provisioning and applications deployment in cloud
computing. Furthermore, researchers focus on providing support
for modeling and deploying cloud applications and managing the
CPIM and CPSM levels following a model-driven approach. In
contrast, ARGON Cloud abstracts the issues related to infras-
tructure modeling of different cloud providers and then generates
scripts for DevOps provisioning tools. As a result, ARGON Cloud
offers a SaaS approach to provide a Domain-Specific Modeling
Language (DSL) and an M2T transformation engine.

3. ARGON CLOUD

ARGON Desktop (Sandobalin et al., 2017a) is an infrastructure
modeling tool for cloud provisioning, which uses the fundamen-
tal principles of Model-Driven Engineering (MDE): abstraction
and automation. On the one hand, ARGON Desktop provides Ar-
gonML (ARGON Modeling Language) to abstract cloud capabil-
ities and thus model cloud infrastructure resources. On the other
hand, ARGON Desktop uses a Model-to-Text (M2T) transforma-
tion engine to generate scripts for cloud infrastructure provision-
ing automatically. The following subsections explain the ARGON
Cloud as a Software-as-a-Services (SaaS) approach.

3.1 Domain-Specific Modeling Language

DevOps community provides a vast range of IaC tools for support-
ing the orchestration of cloud infrastructure provisioning, such as
Ansible, Terraform, CloudFormation, OpenStack Head, etc. Each
IaC tool has a different scripting language to define the cloud in-
frastructure resources. We propose ArgonML to mitigate the com-
plexity of different scripting languages and facilitate a holistic in-
frastructure modeling language. ArgonML is a Domain-Specific
Modeling Language (DSL) to model infrastructure resources for
cloud providers. ArgonML follows the design principles for de-
veloping DSL proposed by Brambilla et al. (2017).

3.1.1 Abstract Syntax

ArgonML has an Infrastructure Metamodel (Sandobalin et
al., 2017a) (IMM) to define modeling concepts, relationships, and
properties of cloud infrastructure resources. According to Bram-
billa et al. (2017), a metamodel constitutes the definition of a mod-
eling language since it describes the whole class of models that
language can represent. Figure 1 shows an excerpt from the IMM,
which abstracts cloud capacities, such as computing, storage, net-
working, and elasticity of different cloud providers, to obtain a
holistic infrastructure modeling language.
ARGON Desktop runs on Eclipse Modeling Framework (Stein-
berg et al., 2009) (EMF) to provide a modeling environment, and
thus, the metamodeling language Ecore* defines the IMM. How-
ever, Ecore is restricted to defining metamodels based solely on
the EMF environment. In this scenario, to provide an abstract

Revista Politécnica, Noviembre 2023 - Enero 2024, Vol. 52, No. 2

Julio Sandobalin; Carlos Iñiguez-Jarrín
90

Infrastructure

1..*

VirtualMachine

SecurityGroup

Inbound

Outbound

Database

File

ElasticIP

LoadBalancer

Listener

LaunchConfiguration

Alarm

ScalingPolicy

0..*

0..*
1

0..*

0..*

0..*

0..*

0..*

0..1

0..*

1..*

0..*

1

0..1
1 1

1

1

1
1

1

1 1

1

1

1

1

1

1

HealthCheck

AutoScalingGroup

Figure 1. Excerpt from the Infrastructure Metamodel (Sandobalin et al., 2017a)

syntax (i.e., infrastructure metamodel) for ARGON Cloud, we
conduct a comparative study of JavaScript Frameworks to obtain
the most suitable option to define the IMM in a textual man-
ner. As a result, we chose Ecore.js to represent the IMM meta-
modeling using JavaScript. Ecore.js implements the Ecore model
in JavaScript, including JSON and XMI (XML Metadata Inter-
change) writers and parsers for web browsers and Node.js.
We describe the main steps below to outline the metamodeling
process and thus obtain an infrastructure metamodel.

• Modeling domain analysis. Since the specific domain of
the DSL is the Infrastructure-as-a-Service (IaaS), we select
the principal cloud providers, such as Google Computing En-
gine, Microsoft Azure, and Amazon Web Services, to define
a holistic IMM. We chose these cloud providers due to their
education licenses.

• Modeling language design. We focus on the infrastructure
resources of cloud providers to abstract their capacities (i.e.,
computing, storage, networking, and elasticity) instead of the
particular scripting languages of the DevOps tools. ARGON
Cloud also generates the IaC scripts for different DevOps
tools from an infrastructure model. As a result, the IMM
(see Figure 2a) represents in a textual manner the cloud ca-
pacities.

• Modeling language validation. To validate infrastruc-
ture concepts, the IMM is instantiated for different cloud
providers. In this context, we generate an infrastructure
model (see Figure 2b) that conforms to the IMM. Therefore,
we create dynamic instances to validate concepts, relation-
ships, and properties of infrastructure models, which are in
accordance with its IMM.

Figure 2a shows an excerpt from the IMM written in a textual
manner using Ecore.js. In Ecore, a Package groups metaclasses
and their data types. In this case, the Ecore Package (line 1) de-
fines its name, which is not to be unique. Instead, a URI (Uniform
Resource Identifier) uniquely identifies the package. This URI is

specified as the value of the nsURI attribute, and the nsPrefix at-
tribute is used to define the corresponding namespace prefix. The
Virtual Machine metaclass (line 8) defines its name (line 9) and the
supertype (line 10) corresponding to the Element metaclass from
which it is extended. The image attribute (line 12) represents a
virtual machine image that contains a virtual disk with a bootable
operating system. Additionally, we define references (line 24) to
other metaclasses, such as the reference to a Security Group meta-
class that works as a firewall to the Virtual Machine.
Since Ecore metamodels are serialized using XMI (XML Meta-
data Interchange). We use the Ecore.js framework to serialize the
IMM. Serialization translates a data structure (i.e., IMM) into a
format that can be stored, transmitted, and reconstructed in dif-
ferent environments. Figure 2b shows an excerpt from the IMM
represented in XMI format. XMI is the format used by the Eclipse
environment as a canonical representation of metamodels. Addi-
tionally, to export the model (which conforms to its metamodel)
is necessary to use the XMI format. For instance, to move an in-
frastructure model (which conforms to the IMM) toward a Model-
to-Text (M2T) transformation engine and thus generate the corre-
sponding IaC script.
The IMM describes the whole infrastructure models that Ar-
gonML can represent. In this case, the IMM defines all infras-
tructure models expressed using ArgonML. Note that the DSL
proposes a holistic modeling language to describe the infrastruc-
ture of any cloud provider. Moreover, it is possible to specialize
the tags of an infrastructure model for a particular cloud provider,
such as Microsoft Azure, Amazon Web Services, Google Com-
puting Engine, etc.

3.1.2 Concrete Syntax

While the abstract syntax (i.e., IMM) constitutes the definition of
the ArgonML since it describes the whole classes of infrastructure
models that can be represented, the concrete syntax defines the no-
tation of the graphical language. Several frameworks provide spe-
cific languages to describe the concrete syntax for ArgonML, as
well as generator components that allow the generation of editors
to visualize and manipulate infrastructure models, such as EuGE-
Nia, Graphiti, Graphical Editing Framework, etc. Since ARGON
Desktop runs on the Eclipse environment, we used EuGENia to
generate the corresponding editor to visualize and manipulate in-
frastructure models. However, ARGON Cloud must be accessed
from different web browsers to provide a SaaS approach. There-
fore, we also conduct a comparative study of JavaScript Frame-
works to obtain the most suitable option to define the graphical
notation. As a result, we selected mxGraph, a JavaScript dia-
gramming library that enables create interactive graph applica-
tions to run natively in any web browser. According to Brambilla
et al. (2017) and considering mxGraph, we define the graphical
concrete syntax for ARGON Cloud through particular elements,
such as graphic symbols, compositional rules, and mapping.
Figure 3a shows an excerpt from visual editor code using mx-
Graph. We specify the graphical concrete syntax as follows:

• Graphical symbols: The mxcell class supports the definition
of the virtual machine element (line 1), a visual element to
be created in the infrastructure visual editor. In this case, the

Revista Politécnica, Noviembre 2023 - Enero 2024, Vol. 52, No. 2

Modeling Cloud Infrastructure Provisioning: A Software-as-a-Service Approach 91

a

1 var Package = Ecore.EPackage.create({
2 name: 'Infrastructure',
3 nsPrefix: 'Infrastructure',
4 nsURI: 'platform:/metamodel/Infrastructure.ecore'});
5 ...
6 var VirtualMachine = Ecore.EClass.create({
7 name: 'VirtualMachine',
8 eSuperTypes: Element
9 });

10 var Image = Ecore.EAttribute.create({
11 name: 'image',
12 eType: Ecore.EString
13 });
14 var InstanceType = Ecore.EAttribute.create({
15 name: 'instanceType',
16 eType: Ecore.EString
17 });
18 var Count = Ecore.EAttribute.create({
19 name: 'count',
20 eType: Ecore.EInt
21 });
22 var Groups = Ecore.EReference.create({
23 name: 'groups',
24 lowerBound: 1,
25 upperBound: -1,
26 eType: SecurityGroup
27 });

b
1 <?xml version="1.0" encoding="UTF-8"?>
2 <ecore:EPackage xmi:version="2.0"
3 xmlns:xmi="http://www.omg.org/XMI"
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
5 xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore"
6 name="Infrastructure"
7 nsURI="platform:/metamodel/Infrastructure.ecore"
8 nsPrefix="Infrastructure">
9 ...

10 <eClassifiers xsi:type="ecore:EClass"
11 name="VirtualMachine"
12 eSuperTypes="#//Element">
13 <eStructuralFeatures xsi:type="ecore:EReference"

name="group" lowerBound="1" upperBound="-1"
eType="#//SecurityGroup">

14 </eStructuralFeatures>
15 <eStructuralFeatures xsi:type="ecore:EAttribute"

name="name" eType="ecore:EDataType http://
www.eclipse.org/emf/2002/Ecore#//EString"/>

16 <eStructuralFeatures xsi:type="ecore:EAttribute"
name="image" eType="ecore:EDataType http://
www.eclipse.org/emf/2002/Ecore#//EString"/>

17 <eStructuralFeatures xsi:type="ecore:EAttribute"
name="instance_type" eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString"
/>

18 </eClassifiers>
19 ...

Figure 2. Representing the Infrastructure Metamodel textually

a
1 var node = doc.createElement('virtualmachine');
2 node.setAttribute('Name', 'Virtual Machine');
3 node.setAttribute('Image', 'ami-0d7c8dde348d3b09f');
4 node.setAttribute('Instance Type', 't2.micro');
5 node.setAttribute('Count', 1);
6 addVertex('images/virtualmachine.png', 40, 40,

'virtualmachine', virtualmachine);
7
8 graph.multiplicities.push(new mxMultiplicity(true,

'virtualmachine', null, null, 0, 1,
['securitygroup'], null, 'CONNECTION_ERROR'));

b

Virtual MachineSecurityGroup

Figure 3. Excerpt from the Concrete Graphical Syntax

virtual machine element has attributes, such as name (line 2),
image (line 3), instance type (line 4), and count (line 5).

• Compositional rules: The mxMultiplicity class helps de-
fine how the virtual machine element links (line 8) with the
security group element. The link defines how these graphical
symbols are nested and combined.

• Mapping: Since we are using Ecore.js to define the abstract
syntax and mxGraph to create the visual editor (i.e., concrete
syntax), we map the graphical symbols to the corresponding
abstract syntax elements. The mapping aims to state which
graphic symbol should be used for which modeling concept.
For instance, a virtual machine element (see Figure 3a) is
visualized as a visual element (see Figure 3b).

Note that Figure 3b shows the concrete graphical syntax of a vir-
tual machine. Moreover, virtual machine properties (see Figure
7a) should be defined in this stage. For instance, the Instance Type
attribute has t2.micro that will provide 1 vCPU and 1 GB of RAM
for a virtual machine in Amazon Web Services.

3.2 ARGON Cloud Architecture

ARGON Cloud follows the metamodeling principle to leverage
the IaC approach using MDE. Metamodels can define new model-
ing languages and properties or features associated with existing
information (a.k.a. metadata). Therefore, ARGON Cloud is based
on a four-layer MDE architecture. We defined a layered architec-
ture that helps us work at different abstractions levels. The archi-
tecture allows us to model the infrastructure resources (indepen-
dently of any cloud provider and IaC tool) and then generate IaC
scripts to orchestrate the cloud infrastructure provisioning. Figure
4 shows the layered ARGON Cloud architecture, where:

• M3: The meta-metamodel defines the concepts used at M2
(i.e., metamodel), specifying how to represent the IMM.
Since ARGON Cloud will run outside the Eclipse environ-
ment, we did not use the Ecore metamodeling language. In
this layer, the JavaScript Framework used as a metamodeling
language is Ecore.js.

• M2: The metamodel defines the concepts used at M1
(i.e., the infrastructure model). In this layer, we specified
all infrastructure concepts abstracted from cloud capacities
(i.e., computing, storage, networking, and elasticity) using

Revista Politécnica, Noviembre 2023 - Enero 2024, Vol. 52, No. 2

Julio Sandobalin; Carlos Iñiguez-Jarrín
92

Ecore.js. The main concepts are infrastructure elements and
their attributes. This layer corresponds to the abstract syntax
of ArgonML.

• M1: At this layer, we model the infrastructure resources
based on concepts defined at M2. ARGON Cloud allows
modeling infrastructure resources of any cloud provider due
to abstraction (at M2) of the capacities of three leading cloud
providers (Google Computing Engine, Microsoft Azure, and
Amazon Web Services) to define a holistic IMM. As a result,
we obtain a generic infrastructure model.

• M0: In this layer, an IaC script is the final instance of its
infrastructure model. ARGON Cloud automatically gener-
ates scripts for several DevOps IaC Tools, such as Ansible,
Terraform, etc. ARGON Cloud uses an M2T transformation
engine to generate scripts from an infrastructure model. Fi-
nally, the IaC tool uses the script to orchestrate the infrastruc-
ture provisioning in a particular cloud provider.

Metaclass

<<instanceOf>>Meta-metamodel

Attribute Infrastructure
Element

Metamodel

Name: Virtual Machine
Image: ami-Od7c8dde348d3b09f
Instance Type: t2.micro
Count: 1

<<instanceOf>>

<<instanceOf>>Model

<<instanceOf>>Instance

IaC Script

M3

M2

M1

M0

*

Figure 4. ARGON Cloud Architecture

3.2.1 A Software-as-a-Service Approach

According to Buyya et al. (2011), end-users can access a
Software-as-a-Service through web browsers, thus alleviating the
burden of software maintenance for customers and simplifying de-
velopment and testing for providers. ARGON Cloud leverages the
SaaS model service to provide end-user access to the visual mod-
eler of cloud infrastructure through a web browser. In this context,
ARGON Cloud has two components: a graphical modeler and an
M2T transformation engine. The former is ArgonML, a DSL de-
veloped using JavaScript Frameworks, such as Ecore.js and mx-
Graph, to provide the visual modeler of cloud infrastructure. The
latter is an M2T transformation engine to support the automatic
generation of IaC scripts from infrastructure models.
The M2T transformation engine uses a REST web service to in-
terchange data with the visual modeler. In this case, ArgonML
uses the XMI (XML Metadata Interchange format) writer of the
Ecore.js library to generate an Ecore XMI file (see Figure 2b) from
an infrastructure model. The M2T transformation engine and all

Cloud Infrastructure
Visual Modeler

ArgonML

M2T Transformarion
Engine

Ecore File IaC Script

Figure 5. ARGON Cloud as Software-as-a-Service

its transformation rules were developed using Acceleo language.
Sandobalin et al. (2017a) explain the procedure to define the trans-
formation rules.
On the other hand, Eclipse is a Java-based application requir-
ing Java Runtime Environment or Java Development Kit (JRE
or JDK) to run. Therefore, the M2T transformation engine for
Eclipse Desktop was packaged as a JAR (a.k.a. Java ARchive).
We reuse the M2T transformation engine packaged as a JAR in
Eclipse Cloud. ArgonML provides an Ecore XMI file compatible
with the M2T transformation engine.

3.3 Limitations

ARGON Cloud currently demonstrates four notable limitations.
Firstly, ARGON Cloud depends on Infrastructure as Code (IaC)
tools to orchestrate infrastructure provisioning on each cloud
provider. While user feedback indicates that the ARGON Cloud is
appropriate for modeling cloud infrastructure resources, they sug-
gest a seamless integration of ARGON Cloud with IaC tools to
avoid moving IaC scripts —generated by ARGON— toward IaC
tools such as Ansible, Terraform, CloudFormation, etc.
The second limitation of ARGON Cloud is that it does not si-
multaneously support the modeling of infrastructure resources for
multi-clouds. It is worth mentioning that ARGON has an agnos-
tic infrastructure metamodel (IMM), which means its Domain-
Specific Modeling Language (i.e., ArgonML) can model infras-
tructure resources for different cloud providers. However, Ar-
gonML can model the infrastructure for one cloud provider at a
time.
A third limitation is that ARGON Cloud does not support calcu-
lating the estimated cost of provisioning infrastructure resources.
Since ARGON can model the infrastructure of different cloud
providers, a significant limitation is that it does not calculate the
estimated cost of the infrastructure modeled that will be provi-
sioned in a particular cloud provider.
Finally, ARGON Cloud is working in an isolated fashion. On
the one hand, ARGON Cloud models the infrastructure resources
for several cloud providers. On the other, it generates IaC scripts
for different provisioning tools. However, ARGON Cloud lacks a
seamless integration with software development tools. to support
an entire DevOps lifecycle. As a result, we have to develop the
software and define the infrastructure in different environments.

Revista Politécnica, Noviembre 2023 - Enero 2024, Vol. 52, No. 2

Modeling Cloud Infrastructure Provisioning: A Software-as-a-Service Approach 93

4. RUNNING EXAMPLE

To demonstrate the feasibility of ARGON Cloud as a Software-
as-a-Service approach, we propose a case study description to ex-
plain how to model and then generate the corresponding script for
infrastructure provisioning in Amazon Web Services (AWS).
The infrastructure requirements for modeling and provisioning are
the following:

• Requirement 1. A Load Balancer Architecture should define
infrastructure resources needed for provisioning them in the
Brazil region of AWS.

• Requirement 2. A Load Balancer element should distribute
the workload among five (5) EC2 Instances (a.k.a. virtual
machines). Each EC2 Instance should have one (1) virtual
CPU and one (1) GB of RAM.

• Requirement 3. A Health Check element should review the
state of each EC2 Instance through port 9090 and TCP proto-
col utilizing checking intervals every 24 seconds and should
wait at least eight (8) seconds to notify an error. Moreover,
the element should receive at least three (3) consecutive er-
rors to change the state of an EC2 instance to an unhealthy
state. In contrast, before changing the state of an EC2 In-
stance to a healthy state, it is necessary to obtain at least six
(6) state verification probes successfully.

• Requirement 4. A Listener element should use the TCP pro-
tocol to resolve client requests through port 80 and distributes
the workload to EC2 instances through port 9090.

• Requirement 5. All infrastructure resources should work in
the first availability zone of the Brazil region in AWS.

• Requirement 6. A Security Group element should enable in-
bound TCP connections to the Load Balancer solely through
port 80. Additionally, all outbound Load Balancer connec-
tions should be allowed.

• Requirement7. A different Security Group element should
enable inbound TCP connections to the EC2 Instances
through port 9090 and port 22. Additionally, all outbound
connections from EC Instances should be allowed.

4.1 Cloud Infrastructure Modeling

Figure 6 shows an Infrastructure Diagram modeled by ARGON
Cloud. Note that the resulting infrastructure model is the input for
the M2T transformation engine that generates a script of infras-
tructure provisioning for Amazon Web Services.
The modeling solution for the infrastructure requirements is ex-
plained below:

• Solution Requirement 1. Figure 6 shows the Infrastructure
Diagram properties that specify the kp-brazil code in the Key
name property and the sa-east-1 code in the Region property
to provision the infrastructure in the Brazil region of AWS.
The File name property is the name of the Infrastructure Di-
agram and the Script.

• Solution Requirement 2. Figure 8a shows the Load Bal-
ancer element, where it is necessary to fill out the Name
property as well as the security group in the Group prop-
erty and the EC2 Instance in the Machines property. Figure
7a presents the EC2 Instance properties. Note that the EC2
Instance defines several virtual machines to be provisioned
with identical hardware characteristics. We specify the num-
ber 5 in the Count property to determine that five EC2 In-
stances will be running with the Load Balancer. The ami-
6d7t8ddee49d3b0f0 property defines the Image code to set
up that each EC2 Instance should have the OS Ubuntu 18.04
LTS with the Apache server. The t2.micro code is specified
in the Instance type property to set that each virtual machine
should have 1 virtual CPU and 1 GB of RAM.

• Solution Requirement 3. Figure 8c shows the properties
of the Health Check element. The Ping protocol property
has the TCP option selected, and the Ping port property has
the number 9090 to allow checking the state of each EC2 In-
stance through the TCP protocol and port 9090. The Interval
property has the number 24, and the Response timeout prop-
erty has the number 6 to enable checking intervals every 24
seconds and the timeout at least 6 seconds to notify an error.
The Healthy threshold property has the number 8, and the
Unhealthy threshold property has the number 3 to configure
the change of the state of an EC2 Instance. On the one hand,
if the element receives at least 3 consecutive errors from an
EC2 Instance, it should change the EC2 Instance state to un-
healthy. On the other hand, if the element receives at least
8 successful consecutive state verification probes, it should
change the EC2 Instance state to healthy.

• Solution Requirement 4. Figure 8b shows the properties of
the Listener element. The Protocol property has the TCP
option selected to enable the TCP protocol to resolve client
requests. The Load balancer port property has the number
80, and the Instance port property has the number 9090 to
ensure client requests are resolved through port 80 and dis-
tributed to the EC2 Instances through port 9090.

• Solution Requirement 5. Figure 7d shows the Zone ele-
ment. The Load Balancer and Virtual Machine elements have
a Zone element connected. To ensure that the Load Balancer
and its EC2 Instances (i.e., virtual machines) work in the first
availability zone of the Brazil region, we should fill out the
sa-east-1a code in the Name property.

• Solution R6.- Figure 8d shows the Inbound element of the
Security Group for the Load Balancer. The Protocol prop-
erty has the TCP option selected, and the properties From
port and To port have the number 80 to enable all inbound
TCP connections to the Load Balancer to be made through
port 80. Figure 7c shows the Outbound element, similar to
the case of the Security Group for the Load Balancer. The
Outbound element has the Protocol property with the ALL
option selected to enable all outbound Load Balancer con-
nections.

• Solution R7. Figure 7b shows the Inbound element of the
Security Group for EC2 Instances. The Protocol property

Revista Politécnica, Noviembre 2023 - Enero 2024, Vol. 52, No. 2

Julio Sandobalin; Carlos Iñiguez-Jarrín
94

Nuevo Open Save RunView Script

100%

PropertiesToolBox

Infrastructure Elements

Virtual Machine

sa-east-1a
Resources Infrastructure

Load Balancer

Security Group

Heal Check

Port

Diagram Browser

sa-east-1a
healthCheck
listener
loadBalancer
Port_ALL
Port_ALL
Port_22
Port_9090
Port_80
sgpLoadBalancer
sgpVirtualMachine
virtualMachine

Port

Listener

Region

virtualMachineloadBalancerhealthCheck

Port_ALL Port_ALLsgpLoadBalancer sgpVirtualMachinePort_80 Port_22

Port_9090

sa-east-1asa-east-1alistener

Infrastructure Modeler Infrastructure.diagram

- hosts: localhost
 connection: local
 gather_facts: no
 vars:
 #Req.1.1.Variables
 region: sa-east-1
 key: kp-brasil
 task:
 - name: Security group
 ec2_group:
 #Req.2.1.Security Group

Output Script

1
2
3
4
5
6
7
8
10
11
12

File name

Key name

Region
sa-east-1

kp-brasil

Infrastructure

Infrastructure model

Figure 6. Infrastructure Diagram for Amazon Web Services

Properties

Name

Group

Image

Virtual Machine

sgpVirtualMachine

ami-6d7t8ddee49d3b0f0

Instance type

t2.micro

Count

5

virtualMachine

+-

Properties

Name

From port

Port (Inbound)

9090

To port

9090

Cidr Ip

0.0.0.0/0

Protocol

TCP

Port_9090

Properties

Name

From port

Port (Outbound)

0

To port

0

Port_ALL

Cidr Ip

0.0.0.0/0

Protocol

ALL

Properties

Name

Zone

sa-east-1a

a b c d

Figure 7. Virtual Machines elements

Properties

Group

Machines

Load balancer

sgpLoadBalancer

virtualMachine

loadBalancer

Name

Properties

Name

Instance port

Load balancer port

Listener

9090

80

Protocol

TCP

listener

Properties

Name

Healthy threshold

Interval

HealthCheck

8

24

Ping port

9090

Ping protocol

TCP

Response timeout

6

Unhealthy threshold

3

healthCheck

Properties

Name

From port

Port (Inbound)

80

To port

80

Cidr Ip

0.0.0.0/0

Protocol

TCP

Port_80

a b c d

Figure 8. Load Balancer elements

Revista Politécnica, Noviembre 2023 - Enero 2024, Vol. 52, No. 2

Modeling Cloud Infrastructure Provisioning: A Software-as-a-Service Approach 95

has the TCP option selected, and the properties From port
and To port have the number 9090 to enable all inbound TCP
connections to the Apache server to be made through port
9090. Another Inbound element has the Protocol property
with the TCP option selected, the properties From port and
To port have the number 22 to enable SSH connections to
EC2 Instances through port 22. Finally, Figure 7c shows the
Outbound element where the Protocol property has the ALL
option selected to ensure that all outbound EC2 Instance con-
nections are enabled.

4.2 Cloud Infrastructure Provisioning

ARGON Cloud allows modeling the cloud infrastructure provi-
sioning for AWS on an infrastructure model and then generating
the script for a particular DevOps provisioning tool, such as Ansi-
ble, Terraform, etc. For instance, Figure 9 shows an excerpt from
the Ansible script generated from the infrastructure model (see
Figure 6).
The Ansible script (see Figure 9) presents the Infrastructure Dia-
gram properties, such as region (line 6) and key (line 7), to be used
to provision the infrastructure in the Brazil region of AWS. In the
task section, the security group for the EC2 Instances (see require-
ment R7) defines the region (line 11) in which they will run, along
with its name (line 12) and a description (line 13). The security
group inbound rules enable EC2 Instances to use TCP protocol to
connect (lines 15 and 19) through Port 9090 (lines 16 and 17) and
Port 22 (lines 20 and 21). Furthermore, the EC2 Instances specify
the region (line 29) in which they will run, kp_name (line 30) is the
key pair of access to the Brazil region, instance_type (line 31) de-
fines the hardware characteristics (e.g., 1 vCPU and 1GB RAM),
image (line 32) is the AMI (Amazon Machine Image) code pro-
vides the information required to launch an instance, exact_count
(line 35) indicates how many instances will be launched, and zone
(line 39) indicates availability zone in which to launch the virtual
machines.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented ARGON Cloud as a Software-
as-a-Service (SaaS) approach. We demonstrated the feasibility of
migrating ARGON from a desktop environment to a shared cloud
service and made available as a software product that represents a
typical profile of a SaaS service. On the one hand, we explained
how a domain-specific modeling language (i.e., ArgonML) was
developed using JavaScript Frameworks, such as Ecore.js and mx-
Graph. However, we used a Model-to-Text (M2T) transformation
engine to generate IaC scripts. Further, we explained a REST web
service to interchange data between ArgonML and the M2T trans-
formation engine. Accordingly, we presented the practicability of
ARGON Cloud, running an example through modeling infrastruc-
ture resources to Amazon Web Services (AWS) and then generat-
ing the corresponding Infrastructure as Code (IaC) script for the
Ansible tool.
Our research achieves migration ARGON toward Cloud Comput-
ing to provide infrastructure modeling and script generation as a
SaaS service. Nevertheless, there are limitations to the use of AR-
GON Cloud and how to improve its features. First, we need an

1 ---
2 - hosts: localhost
3 connection: local
4 gather_facts: no
5 vars:
6 region: sa-east-1
7 key: kp-brazil
8 task:
9 - name: Security Group sgpVirtualMachine

10 ec2_group:
11 region: sa-east-1
12 name: sgpVirtualMachine
13 description: Security Group sgpVirtualMachine
14 rules:
15 - proto: TCP
16 from_port: 9090
17 to_port: 9090
18 cidr_ip: 0.0.0.0/0
19 - proto: TCP
20 from_port: 22
21 to_port: 22
22 cidr_ip: 0.0.0.0/0
23 rules_egress:
24 - proto: all
25 cidr_ip: 0.0.0.0/0
26 register: sgpVirtualMachine
27 - name: EC2 Instances virtualMachine
28 ec2:
29 region: sa-east-1
30 key_name: kp-brazil
31 instance_type: t2.micro
32 image: ami-6d7t8ddee49d3b0f0
33 instance_tags:
34 Name: virtualMachine
35 exact_count: 5
36 count_tag:
37 Name: virtualMachine
38 group: sgpVirtualMachine
39 zone: sa-east-1a
40 wait: yes
41 register: virtualMachine

Figure 9. Excerpt from Ansible script

IaC tool like Ansible or Terraform to execute the cloud infrastruc-
ture provisioning. Currently, ARGON Cloud allows modeling in-
frastructure resources and generates the corresponding IaC scripts.
However, ARGON Cloud must integrate IaC tools and connec-
tions to several providers to provide seamless infrastructure pro-
visioning to a particular provider. Second, ARGON Cloud does
not simultaneously support the infrastructure modeling for multi-
cloud providers. This might be a feature to improve because, as
far as we know, no tool allows modeling multi-cloud infrastruc-
ture resources. Third, ARGON Cloud does not calculate the cost
of provisioning infrastructure resources modeled. This feature is
implemented for cloud providers like Amazon Web Services with
AWS Pricing Calculator services. In this scenario, developing a
pricing calculator in ARGON Cloud could help practitioners un-
derstand the cost of infrastructure modeled for a particular cloud
provider. The challenge is to know the cost of each infrastructure
resource of each cloud provider. Finally, ARGON Cloud works
in an isolated fashion, which means it needs to be integrated with
software development tools to achieve a holistic DevOps lifecycle.
In future work, we want to extend the ARGON Cloud features,
as mentioned afore, such as i) integrating IaC tools to achieve
our tool orchestrate de infrastructure provisioning; ii) modeling
infrastructure resources for multi-cloud; iii) developing a pricing
calculator of infrastructure resources to obtain the price of cloud
infrastructure modeled; and iv) integrating software development
tools to achieve a full DevOps lifecycle. We also plan to run exper-

Revista Politécnica, Noviembre 2023 - Enero 2024, Vol. 52, No. 2

Julio Sandobalin; Carlos Iñiguez-Jarrín
96

iments with practitioners and students with experience in software
development and, in particular, with knowledge of cloud comput-
ing.

ACKNOWLEDGMENTS

This research work was supported by the Escuela Politécnica Na-
cional (Ecuador) under PII-DICC-2021-01 and PII-DICC-2021-
02 projects.

REFERENCES

Brambilla, Marco, Jordi Cabot, and Manuel Wimmer (2017).
Model-Driven Software Engineering in Practice. 2nd. Morgan
and Claypool Publishers. ISBN: 9781627057080.

Brikman, Yevgeniy (2019). Terraform: Up and Running. O’Reilly
Media, Inc., p. 368. ISBN: 9781492046905.

Buyya, Rajkumar, James Broberg, and Andrzej Goscinski (Jan.
2011). Cloud Computing: Principles and Paradigms. John Wi-
ley and Sons. ISBN: 9780470887998.

Casola, Valentina et al. (Aug. 2017). «MUSA deployer: De-
ployment of Multi-cloud Applications». In: Institute of Elec-
trical and Electronics Engineers Inc., pp. 107–112. ISBN:
9781538617588. DOI: https://doi.org/10.1109/
WETICE.2017.46.

Chen, Wei et al. (Aug. 2016). «MORE: A model-driven op-
eration service for cloud-based IT systems». In: Institute of
Electrical and Electronics Engineers Inc., pp. 633–640. ISBN:
9781509026289. DOI: https://doi.org/10.1109/
SCC.2016.88.

Chiari, Michele et al. (2022). «Developing a New DevOps Mod-
elling Language to Support the Creation of Infrastructure as
Code». In: Communications in Computer and Information Sci-
ence 1617 CCIS, pp. 88–93. DOI: https://doi.org/10.
1007/978-3-031-23298-5_8.

Farley, Dave and Jez Humble (2010). Continuous Delivery: Re-
liable Software Releases through Build, Test, and Deploy-
ment Automation. Addison-Wesley Professional, p. 300. ISBN:
9780321670250.

Ferry, Nicolas et al. (Jan. 2018). «CloudMF: Model-Driven Man-
agement of Multi-Cloud Applications». In: ACM Transactions
on Internet Technology (TOIT) 18 (2). DOI: https://doi.
org/10.1145/3125621. URL: https://dl.acm.
org/doi/10.1145/3125621.

Guerriero, Michele et al. (2019). «Adoption, Support, and Chal-
lenges of Infrastructure-as-Code: Insights from Industry». In:
pp. 580–589. DOI: https : / / doi . org / 10 . 1109 /
ICSME.2019.00092.

Kartheeyayini, V. et al. (2022). «AWS cloud computing platforms
deployment of landing zone - Infrastructure as a code». In:
vol. 2393. DOI: https : / / doi . org / 10 . 1063 / 5 .
0079757.

López-Viana, Ramón, Jessica Díaz, and Jorge E. Pérez (2022).
«Continuous Deployment in IoT Edge Computing: A GitOps
implementation». In: 2022 17th Iberian Conference on In-
formation Systems and Technologies (CISTI), pp. 1–6. DOI:
https://doi.org/10.23919/CISTI54924.2022.
9820108.

Miñón, Raúl et al. (2022). «Pangea: An MLOps Tool for Au-
tomatically Generating Infrastructure and Deploying Analytic
Pipelines in Edge, Fog and Cloud Layers». In: Sensors 22(12).
DOI: https://doi.org/10.3390/s22124425.

Morris, Kief (2016). Infrastructure as Code : Managing Servers
in the Cloud. O’Reilly Media, Inc. ISBN: 9781491924358.

Neharika, Keerthi and Ruth G. Lennon (2023). «Investigations
into Secure IaC Practices». In: Proceedings of Seventh Interna-
tional Congress on Information and Communication Technol-
ogy. Ed. by Xin-She Yang et al. Springer Nature Singapore: Sin-
gapore, pp. 289–303. ISBN: 978-981-19-1610-6. DOI: https:
//doi.org/10.1007/978-981-19-1610-6_25.

Nitto, Elisabetta Di et al. (2017). Model-Driven Development and
Operation of Multi-Cloud Applications. Ed. by Elisabetta Di
Nitto et al. 1st. Springer Cham. DOI: https://doi.org/
10.1007/978-3-319-46031-4.

Palma, Stefano Dalla, Dario Di Nucci, and Damian Tamburri
(2022). «Defuse: A Data Annotator and Model Builder for Soft-
ware Defect Prediction». In: 2022 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME),
pp. 479–483. DOI: https : / / doi . org / 10 . 1109 /
ICSME55016.2022.00063.

Rossini, Alessandro (2015). «Cloud Application Modelling and
Execution Language (CAMEL) and the PaaSage Workflow».
In: Advances in Service-Oriented and Cloud Computing —
Workshops of ESOCC 2015, Taormina, Italy. ISBN: 978-3-319-
33312-0. DOI: https://doi.org/10.1007/978-3-
319-33313-7.

Sandobalin, Julio, Emilio Insfran, and Silvia Abrahao (2017a).
«An Infrastructure Modelling Tool for Cloud Provisioning».
In: Proceedings of the IEEE 14th International Conference on
Services Computing, SCC 2017. ISBN: 9781538620052. DOI:
https://doi.org/10.1109/SCC.2017.52.

Sandobalin, Julio, Emilio Insfran, and Silvia Abrahao (2017b).
«End-to-end automation in cloud infrastructure provision-
ing». In: Proceedings of the 26th International Confer-
ence on Information Systems Development, ISD 2017. ISBN:
9789963228836. URL: http://aisel.aisnet.org/
isd2014/proceedings2017/ISDMethodologies/
5.

Sandobalin, Julio, Emilio Insfran, and Silvia Abrahao (2018).
«An infrastructure modeling approach for multi-cloud provi-
sioning». In: Proceedings of the 27th International Conference
on Information Systems Development: Designing Digitaliza-
tion, ISD 2018. ISBN: 978-91-7753-876-9. URL: http : / /
aisel.aisnet.org/isd2014/proceedings2018/
ISDMethodologies/2.

Sandobalin, Julio, Emilio Insfran, and Silvia Abrahao (2020).
«On the effectiveness of tools to support infrastructure as code:
Model-driven versus code-centric». In: IEEE Access 8. ISSN:
21693536. DOI: https://doi.org/10.1109/ACCESS.
2020.2966597.

Solayman, Haleema Essa and Rawaa Putros Qasha (2023).
«Seamless Integration of DevOps Tools for Provisioning Au-
tomation of the IoT Application on Multi-Infrastructures». In:
2023 3rd International Conference on Intelligent Communi-
cation and Computational Techniques (ICCT), pp. 1–7. DOI:

Revista Politécnica, Noviembre 2023 - Enero 2024, Vol. 52, No. 2

https://doi.org/https://doi.org/10.1109/WETICE.2017.46
https://doi.org/https://doi.org/10.1109/WETICE.2017.46
https://doi.org/https://doi.org/10.1109/SCC.2016.88
https://doi.org/https://doi.org/10.1109/SCC.2016.88
https://doi.org/https://doi.org/10.1007/978-3-031-23298-5_8
https://doi.org/https://doi.org/10.1007/978-3-031-23298-5_8
https://doi.org/https://doi.org/10.1145/3125621
https://doi.org/https://doi.org/10.1145/3125621
https://dl.acm.org/doi/10.1145/3125621
https://dl.acm.org/doi/10.1145/3125621
https://doi.org/https://doi.org/10.1109/ICSME.2019.00092
https://doi.org/https://doi.org/10.1109/ICSME.2019.00092
https://doi.org/https://doi.org/10.1063/5.0079757
https://doi.org/https://doi.org/10.1063/5.0079757
https://doi.org/https://doi.org/10.23919/CISTI54924.2022.9820108
https://doi.org/https://doi.org/10.23919/CISTI54924.2022.9820108
https://doi.org/https://doi.org/10.3390/s22124425
https://doi.org/https://doi.org/10.1007/978-981-19-1610-6_25
https://doi.org/https://doi.org/10.1007/978-981-19-1610-6_25
https://doi.org/https://doi.org/10.1007/978-3-319-46031-4
https://doi.org/https://doi.org/10.1007/978-3-319-46031-4
https://doi.org/https://doi.org/10.1109/ICSME55016.2022.00063
https://doi.org/https://doi.org/10.1109/ICSME55016.2022.00063
https://doi.org/https://doi.org/10.1007/978-3-319-33313-7
https://doi.org/https://doi.org/10.1007/978-3-319-33313-7
https://doi.org/https://doi.org/10.1109/SCC.2017.52
http://aisel.aisnet.org/isd2014/proceedings2017/ISDMethodologies/5
http://aisel.aisnet.org/isd2014/proceedings2017/ISDMethodologies/5
http://aisel.aisnet.org/isd2014/proceedings2017/ISDMethodologies/5
http://aisel.aisnet.org/isd2014/proceedings2018/ISDMethodologies/2
http://aisel.aisnet.org/isd2014/proceedings2018/ISDMethodologies/2
http://aisel.aisnet.org/isd2014/proceedings2018/ISDMethodologies/2
https://doi.org/https://doi.org/10.1109/ACCESS.2020.2966597
https://doi.org/https://doi.org/10.1109/ACCESS.2020.2966597

Modeling Cloud Infrastructure Provisioning: A Software-as-a-Service Approach 97

https://doi.org/10.1109/ICCT56969.2023.
10075814.

Steinberg, David et al. (2009). EMF: Eclipse Modeling Frame-
work. 2nd. Addison-Wesley Professional. ISBN: 0321331885.

Zhou, Huan et al. (2019). «CloudsStorm: A framework for seam-
lessly programming and controlling virtual infrastructure func-
tions during the DevOps lifecycle of cloud applications». In:
Software - Practice and Experience 49(10), pp. 1421–1447.
DOI: https://doi.org/10.1002/spe.2741.

BIOGRAPHIES

Julio Sandobalín, is Professor at Es-
cuela Politécnica Nacional, Ecuador.
He received his Ph.D. in Computer
Science and Master in Software En-
gineering from Universitat Politècni-
ca de València, Spain. His research
areas of interest are Model-Driven
Engineering, Requirement Enginee-
ring, Empirical Software Enginee-
ring, DevOps, and Agile. Currently,
his research focuses on the conti-

nuous delivery of cloud resources based on Model-Driven Engi-
neering and DevOps

Carlos Iñiguez-Jarrín, is Professor
in informatics at Escuela Politécni-
ca Nacional (EPN), Ecuador. He has
a Ph.D. in Computer Science from
Universitat Politècnica de València
(Spain), where he was a member of
the Genomic Group at PROS Re-
search Center. He holds a Master’s
Degree in Web Engineering from
Universidad Politécnica de Madrid
(Spain). He is currently involved in

user experience design and interaction design.

.

Revista Politécnica, Noviembre 2023 - Enero 2024, Vol. 52, No. 2

https://doi.org/https://doi.org/10.1109/ICCT56969.2023.10075814
https://doi.org/https://doi.org/10.1109/ICCT56969.2023.10075814
https://doi.org/https://doi.org/10.1002/spe.2741

Julio Sandobalin; Carlos Iñiguez-Jarrín
98

. .

Revista Politécnica, Noviembre 2023 - Enero 2024, Vol. 52, No. 2

	INTRODUCTION
	RELATED WORK
	ARGON CLOUD
	Domain-Specific Modeling Language
	Abstract Syntax
	Concrete Syntax

	ARGON Cloud Architecture
	A Software-as-a-Service Approach

	Limitations

	RUNNING EXAMPLE
	Cloud Infrastructure Modeling
	Cloud Infrastructure Provisioning

	CONCLUSIONS AND FUTURE WORK

