
Web User Interface Design of a Visual Editor for Cloud Infrastructure Modeling 83

Web User Interface Design of a Visual Editor for Cloud
Infrastructure Modeling

Íñiguez-Jarrín, Carlos 1,∗ ; Sandobalín, Julio 2

1Escuela Politécnica Nacional, Facultad de Ingeniería de Sistemas, Quito, Ecuador

Abstract: Cloud computing has evolved the way IT technicians manage infrastructure resources to support software
applications. Leasing equipment and services from cloud infrastructure providers, such as Amazon Web Services, Micro-
soft Azure, etc., has replaced the traditional strategy of locally installing expensive equipment. Nowadays, IT technicians
model the infrastructure they need by writing scripts, then running these scripts in the provider web platform. However,
writing scripts becomes a complex task that involves interacting with the Command Line Interface and knowing the com-
mands each provider imposes. In this context, replacing textual with visual interaction becomes a need. The purpose is to
fesign the user interface (UI) of a visual web editor to model the cloud infrastructure resources. The User-Centered De-
sign (UCD) methodology was applied to design the UI. As part of DCU, a study of the UIs of diagramming online tools
was conducted to identify UI design patterns; those that expert designers use when designing visual editors.The results
show that a set of 11 UI patterns for designing visual editor UIs was defined. In addition, a pattern language was built
considering the relationships between patterns. By using the pattern language, the visual editor UI design was composed.
As conclusions, the pattern language provided a logical way to compose the visual editor UI. In this sense, the proposed
UI together with the pattern language can become a reference point for designing UIs in this domain. In future work, the
effectiveness of the UI in reducing the complexity of defining the cloud infrastructure will be evaluated with user tests.

Keywords: Interaction Design; User Interface; User-Centered Design; Cloud Infrastructure Modeling

Diseño de Interfaz de Usuario Web de un Editor Visual para el
Modelamiento de Infraestructura en la Nube

Resumen: La computación en la nube ha evolucionado la forma en que los técnicos de TI administran los recursos de
infraestructura para respaldar las aplicaciones de software. El alquiler de equipos y servicios de proveedores de infra-
estructura en la nube, como Amazon Web Services, Microsoft Azure, etc., ha reemplazado la estrategia tradicional de
instalar localmente equipos costosos. Hoy en día, los técnicos de TI modelan la infraestructura que necesitan escribiendo
scripts y luego ejecutándolos en la plataforma del proveedor. Sin embargo, escribir scripts se convierte en una tarea com-
pleja que implica interactuar con la Interfaz de Línea de Comandos y conocer los comandos que impone cada proveedor.
En este contexto, la sustitución de la interacción textual por la visual se convierte en una necesidad. El objetivo de este
trabajo es diseñar la interfaz de usuario (UI) de un editor web visual para modelar los recursos de la infraestructura de la
nube. Para el diseño de la UI se aplicó la metodología de Diseño Centrado en el Usuario (UCD). Como parte de DCU,
se llevó a cabo un estudio de las UI de herramientas en línea de diagramación para identificar patrones de diseño de UI;
los que usan los diseñadores expertos al diseñar editores visuales. Los resultados demuestran que se definió un conjunto
de 11 patrones de interfaz de usuario para diseñar interfaces de usuario de editores visuales. Además, se construyó un
lenguaje de patrones considerando las relaciones entre patrones. Mediante el uso del lenguaje de patrones, se compuso
el diseño de la interfaz de usuario del editor visual. A manera de conclusiones, el lenguaje de patrones proporcionó una
forma lógica de componer la interfaz de usuario del editor visual. En este sentido, la IU propuesta junto con el lenguaje de
patrones puede convertirse en un punto de referencia para el diseño de IU en este dominio. En trabajos futuros, la eficacia
de la interfaz de usuario, para reducir la complejidad de definir la infraestructura en la nube, se evaluará con pruebas de
usuario.

Palabras clave: Diseño de Interacción; Interfaz de Usuario; Diseño Centrado en el Usuario; Modelamiento de Infraes-
tructura de la Nube

*carlos.iniguez@epn.edu.ec
Recibido: 02/08/2022
Aceptado: 28/06/2023
Publicado en línea: 01/08/2023
10.33333/rp.vol52n1.09
CC 4.0 Revista Politécnica, Agosto - Octubre 2023, Vol. 52, No. 1

https://orcid.org/0000-0003-1338-7542
https://orcid.org/0000-0002-5273-9195
https://doi.org/10.33333/rp.vol52n1.09
https://creativecommons.org/licenses/by-nc-sa/4.0/


Carlos Iñiguez-Jarrón; Julio Sandobalin
84

1. INTRODUCTION

Cloud Computing, also known simply as cloud, is a set of techno-
logy services that allows accessing, storing, and processing of data
through the Internet. The cloud has changed the way Information
Technology (IT) technicians (e.g., IT managers, cloud architects,
software engineers, etc.) manage the IT resources (e.g., servers,
routers, load balancers, networking, etc.) to support the developing
and deploying of software applications. The traditional strategy of
buying expensive hardware and hosting them in physical space is
currently being replaced by a more versatile strategy known as
cloud infrastructure provisioning.
Cloud infrastructure provisioning consists of managing the in-
frastructure resources using services from infrastructure providers
(e.g., Amazon Web Services, Microsoft Azure, Google Compu-
ting Engine, etc.). Providers make available a wide range of vir-
tualized infrastructure resources to support IT technicians in defi-
ning (i.e., plan, create, and configure) the infrastructure resources
(RedHat, 2020).
In practice, IT technicians use a Command Line Interface (CLI)
console to write code scripts to define hardware resources to pro-
vision. There is a CLI for each provider, which means the com-
mands used for each provider are different. In some cases, the CLI
console is also available as a Web user interface. Sandobalin et al.
(2017) point out that the infrastructure provisioning process can
be time-consuming and prone to human errors due to the manual
process of defining scripts.
In this context, using the User Interface (UI) is a challenge sin-
ce the commands (in the case of CLI) or interactions (in the case
of the Web user interface) are particular for each cloud provider.
Consequently, the IT technician must learn the particular com-
mands or interactions for each cloud provider (e.g., to define a
virtual machine, the commands provided by Amazon Web Servi-
ces are different from commands provided by Microsoft Azure).
UI can be responsible for a high learning curve or the cognitive
load related to learning a lot of CLI commands, which are exclu-
sive to each infrastructure provider. Therefore, improving how IT
technicians interact with the UI to manage infrastructure provisio-
ning becomes necessary in this domain.
The purpose of this paper is to present the design of a web visual
editor for infrastructure modeling capable of being “usable” for
the largest number of users in the domain. Usability is an attribute
of a product quality defined by ISO 9241-11:1998 as "the extent to
which a product can be used by specific users to achieve specific
objectives with effectiveness, efficiency, and satisfaction in a spe-
cific context of use.”. Considering this definition, achieving usa-
bility implies designing products based on a deep understanding
of the user goals and the tasks users want to perform to achieve
the goals. The User-Centered Design (UCD) methodology is wi-
dely used to achieve usability. In this paper, we apply UCD for
designing the visual editor.
The core of UCD philosophy focuses mainly on the users’ charac-
teristics and goals to design a UI tailored to the user interaction
needs. To do that, UCD is based on three foundational principles
(Wallach and Scholz, 2012): i) focused on users (i.e., the users are
involved from the earliest stages of the design process), ii) empi-
rical measurement (i.e., measurement of usability using prototy-
pes), and iii) iterative (i.e., prototypes are refined continuously to

meet the user requirements).
To achieve those principles, UCD provides an iterative design pro-
cess consisting of four distinct activities described in ISO 9241-
210.2010: understanding the context of use, specifying require-
ments, solution design, and evaluation. This paper describes the
three first UCD activities for designing the web visual editor user
interface. Activity 4, Evaluation of design solutions, is not presen-
ted in this paper and is considered for future work.

• Activity 1: Understanding and specifying the Context of
Use.- This activity starts by understanding the constructs in-
volved in the cloud infrastructure modeling domain, the po-
tential users of the web visual editor, and the environment
in which the editor will be used. The information available
in books and official websites of infrastructure providers will
be useful to achieve this activity.

• Activity 2: Requirements specification.- This activity consists
of defining the goals pursued by users when modeling the
infrastructure and the tasks users perform to achieve their
goals.

• Activity 3: Production of design solutions.- This activity is
creative in deep and involves translating the goals and tasks
identified in Activity 2 into a user interface design prototype.
This UI prototype is known as a design solution since it is
a design that solves the user interaction needs (i.e., the tasks
the user wants to perform to achieve the goals). This activity
is supported by design principles and good practices such as
using UI design patterns which help designers not to reinvent
the wheel.

Task Analysis and using UI Design Patterns are two UCD tech-
niques we apply to design the web visual editor. Task Analysis is
applied to Activity 2, whereas Design Patterns is applied in Acti-
vity 3.
Based on UCD, the proposed web visual editor design considers
visual and interactive aspects that allow the user to model the in-
frastructure. The visual editor allows users to define the infrastruc-
ture elements and their relationships while reducing the cognitive
load of remembering specific commands or codes.
The remainder of this paper is structured as follows: Section 2
highlights some related works involved in the complex domain of
provisioning infrastructure modeling. Section 3 presents the de-
sign process of the web visual editor considering the two UCD
techniques (i.e., task analysis and UI design patterns). Section 4
describes the conclusions and future work in the line of the work.

2. RELATED WORKS

This section describes the user interfaces of existing relevant tools
for modeling infrastructure. We focus on user interfaces based
on Web and standalone since they represent user-machine inter-
actions relevant to our purpose.
CloudFormation Designer is a web user interface that simplifies
the creation of infrastructure templates in the Amazon Web Ser-
vices (AWS) ecosystem (AWS, 2021a). The user interface imple-
ments the “drag and drop” mechanism, making it easy for the user
to model the infrastructure. The user selects the infrastructure ele-
ments to include in the model, drags them onto the diagram, and

Revista Politécnica, Agosto - Octubre 2023, Vol. 52, No. 1



Web User Interface Design of a Visual Editor for Cloud Infrastructure Modeling 85

connects them to establish relationships. From the graphical mo-
del, it is possible to automatically generate a template script in
declarative languages, such as JSON or YAML, that contains the
AWS infrastructure resources the IT technician has graphically
created or configured. Although this designer is considered a re-
ference in the user interfaces of this domain, it is limited to being
used in the AWS ecosystem. Moreover, though JSON is a light-
weight format and readable for machines, it is hard to understand
at the business level.
Ca 3Tera AppLogic is a platform aimed at MSP (Managed Servi-
ce Provider). An MSP is a company that provides and manages IT
services, including cloud services (IONOS, 2021). The AppLogic
editor is a web user interface that implements the “drag and drop”
mechanism that allows technicians to build a cloud infrastructure
in a graphical and easy-to-view way. The user interface contains
two main areas: i) a component catalog panel located on the left si-
de of the editor where components are grouped by their type (e.g.,
Web Servers, Databases, Filters, etc.) and ii) a canvas that covers
most of the user interface area and where the infrastructure dia-
gram is created. From the component catalog panel, components
are dragged onto the diagram, and each component on the dia-
gram allows the user to draw a connector to another component.
Configuring each component is possible through a contextual me-
nu that presents, in another browser window, a form with editable
properties of the component.
ARGON is an Eclipse Modeling Framework-based standalone
tool for modeling infrastructure in the cloud (Sandobalin et al.,
2019). Its main purpose is to abstract the complexity of learning
specific commands of each provider. To do that, ARGON consists
of i) an underlying DSL (Domain Specific Language) that provi-
des the commands and syntax necessary to define the infrastructu-
re through code, and ii) a visual editor, the ARGON user interface,
which is built on Eugenia (Kolovos et al., 2015) (Graphical Mode-
ling Framework), and which main purpose is to reduce the user’s
cognitive load related to learning the DSL commands and syntax.
Although the visual editor represents a mechanism to facilitate the
use of DSL, the authors describe several drawbacks related to the
editor:

• Problems in the maintenance of the visual editor developed
in Eugenia and Eclipse

• Limited use of ARGON due to the user interface running lo-
cally rather than on the web

• The interaction with the visual editor is limited to the inter-
actions provided by Eclipse

3. EDITOR USER INTERFACE DESIGN

In this section, we describe how the three UCD activities (i.e.,
context of use, requirements specification, and design of solution)
have been applied to design the visual editor user interface for
infrastructure modeling.

3.1 Context of Use

Understanding the context of use involves two main actions: i)
understanding the conditions under which the editor will be used,

and ii) understanding the concepts (constructs) involved in the do-
main.
Regarding the first action, we have identified three relevant condi-
tions related to the use of the editor:

• Web access.- A concern described in the related works sec-
tion is the ”limitation of use” of existing editors that work
locally (i.e., the editor is installed on the user’s computer). In
this sense, an imminent need is to access the editor through
the web, extending the use of the editor to a large number
of users. In addition, users do not want to deal with installa-
tion and configuration difficulties, which do not happen on
the web platform.

• Familiarity with the use of visual tools.- Users of this domain
are familiar with graphical tools for software modeling. The-
se tools allow users to create a variety of diagrams, from con-
cept maps to complex diagrams in UML (Unified Modeling
Language). The benefit of creating diagrams is to provide a
graphical model to better understand the complexity of a do-
main. The model provides an organized visualization of the
elements of the domain and their relationships.

• Direct manipulation as interaction style.- The UIs of these
tools are characterized by implementing direct manipulation
as an interaction style to facilitate the modeling task. The user
can quickly “drag and drop” elements to the model and esta-
blish the relationships between them, generating an easy-to-
understand schema; something very complex to achieve with
interaction styles such as CLI or forms.

Concerning the second action, we have analyzed the existing lite-
rature published on the official websites of infrastructure providers
to define the concepts involved in the domain. We found that every
provider uses different commands to explain how to configure in-
frastructure resources within their infrastructure environment. For
instance, a server in the cloud is defined as an EC2 instance in
AWS, whereas the same server is defined as virtual machine in
Microsoft Azure (Wickham, 2018).
To avoid this terminology difference, we considered a previous
work (Sandobalin, 2017) where an infrastructure metamodel is
presented to generalize the terminology. This metamodel (Figure
1) defines the main concepts or constructs involved in the infras-
tructure provisioning domain.
It is important to note that the metamodel represents a static view
of the domain. That is, the metamodel shows the concepts invol-
ved in the infrastructure and how they are related, but not how to
use them. In the next section, we supplement the metamodel static
view with “task models” that dynamically define “how” users use
the concepts defined in the metamodel. In this sense, the visual
editor conditions and domain concepts presented in this section
become relevant information for the next UCD activity: require-
ments specification.

3.2 Requirements specification

User requirements describe what the users want to do with the
visual editor. It is to say, the tasks the user needs to perform for

Revista Politécnica, Agosto - Octubre 2023, Vol. 52, No. 1



Carlos Iñiguez-Jarrón; Julio Sandobalin
86

Infrastructure

1..*

 
VirtualMachine

 
SecurityGroup

 
Inbound

 
Outbound

 
Database

 
File

 
ElasticIP

 
LoadBalancer

 
Listener

 
LaunchConfiguration

 
Alarm

 
ScalingPolicy

0..*

0..*
1

0..*

0..*

0..*

0..*

0..*

0..1

0..*

1..*

0..*

1

0..1
1 1

1

1

1
1

1

1 1

1

1

1

1

1

1

 
HealthCheck

 
AutoScalingGroup

  

Figure 1. Infrastructure metamodel (Sandobalin, 2017)

modeling and provisioning the infrastructure by using cloud vir-
tualized resources from infrastructure providers. This section fo-
cuses on defining the tasks users perform when provisioning in-
frastructure in the cloud. To do that, we use a UCD technique:
“task models”.
A task model is a design artifact in the Human-Computer Inter-
action (HCI) field commonly used to understand how activities
should be performed to obtain usable user interfaces. A task mo-
del helps understand the complexity of a domain by specifying
and representing the logical tasks and their relationships a usable
system supports or must support (Paternò, 2003). Indeed, task mo-
dels are widely used in several stages of a system. For an existing
system, task models help understand how the application works
with the advantage of improving the current interaction with the
system. For a proposed system, task models help to understand the
domain before developing the application. Moreover, task models
support effective design and usability evaluation. Task models be-
come a dynamic view of the domain since they describe the tasks
and how they are performed.
Our purpose is to use task models to specify the tasks that are
currently performed when IT technicians model the cloud infras-
tructure provisioning by using the services from cloud providers.
Task models in our domain include tasks and their temporal rela-
tionships, and they express how to use the infrastructure elements
defined in the metamodel in Figure 1.
To define the task model, we will use ConcurTaskTree (CTT) no-
tation introduced by Paternò (2003). There are several approaches
to represent task models such as hierarchical task analysis (HTA),
GOMS, user action notation (UAN), etc. However, we use CTT
notation because it provides a systematic and structured method
to describe with a graphical syntax not only the tasks in a hierar-
chical structure but also represent the relationships between tasks
through temporal operators. For instance, the concurrency opera-
tor can be used to specify that two tasks (A and B) can be si-
multaneously performed, or the enabling operator can be used to
specify that task B cannot begin until task A has been completed.
By using CTT, several potential advantages can be highlighted: i)
the models are at a level of abstraction familiar to user interface
designers/developers, ii) testing will follow the anticipated use of
the system, and iii) the cost incurred in developing is much redu-

ced (Silva et al., 2008).
To define the tasks involved in infrastructure provisioning, we stu-
died the existing literature available on the official websites of in-
frastructure providers. From this study, we define a generic task
model shown in Figure 2. This model describes the tasks related
to i) how the user defines the physical location of the data centers
that contain the infrastructure elements (e.g., servers, routers, net-
works, subnets, etc.) and ii) how these elements are included in the
infrastructure model. Considering the CTT notation, most of the-
se tasks are “abstract tasks” (those represented with the “cloud”
icon), however, they are detailed in Figure 3.

Figure 2. Generic task model for infrastructure modeling

In Figure 2, the “Select Region” interaction task means that the
IT technician defines the geographical area where the resources or
services that will be used to model the infrastructure are located.
Defining the geographic area implies defining the region and the
availability zones where the resources are located. A region is a
defined geographic area around the world where a provider’s da-
ta centers are physically located. Within a region, resources are
located in isolated physical zones, called availability zones. The
delimitation and isolation of regions and availability zones im-
prove the efficiency in managing the availability of resources and
guarantee the infrastructure resiliency (i.e., in the face of any dis-
ruption, the infrastructure services will continue to operate) (Fi-
resmith, 2019). Each provider has multiple regions and availabi-
lity zones, and the user must select in which of them to work. For
instance, for Amazon EC2 and Microsoft Azure, regions and avai-
lability zones are shown in AWS (2021b) and Microsoft (2021),
respectively.
The “Configure Net” task involves the following tasks:

• “Create VPC”.- Define a Cloud Private Network (VPC)
within the provider’s global network. Details of this task are
shown in Figure 3-a

• “Create Subnet”.- Define subnets within the VPC. The as-
terisk (*) in the task means repeatability, it is to say, the
possibility of creating one or more subnets within the VPC.
Creating subnets prevents resources from being dispersed th-
roughout the provider’s network and being exposed to mo-
difications by other users. Details of this task are shown in
Figure3-b.

Revista Politécnica, Agosto - Octubre 2023, Vol. 52, No. 1



Web User Interface Design of a Visual Editor for Cloud Infrastructure Modeling 87

Figure 3. Detailed Model tasks from Environment Settings

• “Configure NACL”.- Define a list of access control to the net-
work. The brackets “[]” around the task label mean that this
is an optional task.

The “Create Instance” task consists of locating the virtual machi-
nes within the subnets. Virtual machines can be connected to other
virtual resources, as represented in the metamodel in Figure 1. For
example, a virtual machine can be connected to a load balancer
or attached to a security group. Since several virtual machines can
be created, this task is a repetitive task. It is to say, the user will
perform this task for each resource that wants to include in the
infrastructure model. Details of this task are shown in Figure 3-c.
The task models presented in this section represent the general
interactions that IT technicians perform when modeling the in-
frastructure. This is why these models become an important input
for designers and developers who are challenged in designing and
implementing envisioned user interfaces in the infrastructure pro-
visioning domain. For our purpose, the task models become the
entry point for designing the solution: the user interface prototype
for the infrastructure modeling visual editor.

3.3 Design of solution

This section explains how the user requirements expressed in tasks
are translated into a tangible user interface (UI). To design the UI,

we defined and used UI design patterns; a UCD technique consi-
dered as a design best practice and a useful for UI design (Mac-
Donald, 2019). Furthermore, by considering the relationships bet-
ween the patterns, we defined a Pattern language as a suitable tool
to design the web visual editor.

3.3.1 Patterns

The pattern concept was born in the architecture field to descri-
be proven design solutions for recurring problems related to the
building of buildings, houses, roads, etc (Weigold et al., 2020).
Since the concept was born in the architecture area, the concept
has been adopted in several areas such as Software Engineering
(Weigold et al., 2020) and Human-Computer Interaction (HCI)
(Seffah, 2015), and adapted to the specifics of each area, but
without losing its essence. In the area of User Interface Design
(a subfield of HCI), the pattern also known as UI Design Patterns
are defined as reusable/recurring components which designers use
to solve common problems in user interface design (MacDonald,
2019).
According to this definition and to gather ideas about how to de-
sign the visual editor, we studied the UIs of eight web tools for
modeling or drawing software diagrams: Lucid Chart1, Visual Pa-

1https://www.lucidchart.com

Revista Politécnica, Agosto - Octubre 2023, Vol. 52, No. 1



Carlos Iñiguez-Jarrón; Julio Sandobalin
88

Table 1. UI design patterns
Patterns Tool

Code Pattern name LucidChart Visual Paradigm Moqup GitMind Miro Creately CloudFormation CA Applogic

P1 Editor X X X X X X X X
P2 Canvas X X X X X X X X
P3 Property explorer X X X X X
P4 Toolbar X X X X X
P5 Execution results X
P6 Model name X X X X X X
P7 User account X X X X X
P8 Project actions X X X X
P9 Element hierarchy X
P10 Modeling display actions X X X X X X X
P11 Element arrangement X X

radigm2, Moqup3, GitMind4, Miro5, Creately6, CloudFormation
Designer7, CA Applogic8.
Though the list of tools could be too long, we selected them be-
cause i) they are commonly used in the software development
community and ii) their user interfaces are web editors that allow
users to model software engineering artifacts (e.g., the architectu-
re or infrastructure of a software application); something similar
to what we pursue with our web editor.
The main purpose of this study was to identify user interface de-
sign patterns. That is, identify UI design solutions that expert de-
signers have reused over and over again to solve interaction pro-
blems in the software modeling domain. As a result of this study,
we identified eleven patterns as shown in Table 1 where “X” in-
dicates in which tool the pattern was identified. Figure 4 shows
an example of the pattern identification task performed on user
interfaces of Moqup and CloudFormation tools.
Once the patterns were identified, we documented them. There are
several templates for documenting patterns, each tailored to the
documentation needs of each domain. To document the identified
patterns, we have adapted the Tidwell template (Tidwell, 2010)
by defining four parts: WHAT (what the pattern solves, i.e. the
problem it solves), WHEN (when the pattern is used or should be
used), HOW (how the pattern can be implemented), EXAMPLE
(one or more UI images showing how the pattern has been im-
plemented). For instance, Table 3 shows the definition of Toolbar
Pattern (P4) based on the four-part template. The rest of the pat-
terns are described in Appendix A, in the same style as the Toolbar
pattern.
Although, the defined patterns describe general solutions to inter-
action problems in the modeling software domain, these patterns
can be perfectly adapted to solve interaction problems in the in-
frastructure provisioning domain. Indeed, the idea is to relate the
defined patterns so far with the interactions defined in task models
(see Section 3.2). For instance, Canvas (P2), Property explorer
(P3), and ToolBar (P4) patterns are related to the interactions de-
fined in Create VPC task model (see Figure 3-a) since: from the
toolbar (P4), the user can select an element that represents a VPC,
drag and drop it onto the canvas (P2), and then define the VPC

2https://online.visual-paradigm.com
3https://app.moqups.com
4https://gitmind.com
5https://miro.com
6https://app.creately.com
7https://aws.amazon.com/es/cloudformation/
8http://inunison.com/products/ca-applogic/

Table 2. Patterns addressing the tasks
Task models

Pattern
Configure Create Create Create

environment VPC subnet instance
(Figure 2) (Figure 3-a) (Figure 3-b) (Figure 3-c)

P1 X
P2 X X X
P3 X X X
P4 X X X
P5 X
P6 X
P7 X
P8 X
P9 X X X

P10 X X X
P11 X X X

Table 3. Toolbar Pattern
NAME: Toolbar
CODE: P4
WHAT: List the range of elements that can be included in the mo-

del.
WHEN: Modeling involves specifying elements with their rela-

tionships. The user needs to clearly identify the range of
elements available to model.

HOW: Show a window with the set of elements available for the
model. The elements must be represented as icons that are
familiar to the user and that are clearly identifiable. The
window is generally located on the sides of the editor, pre-
ferably on the left side. The window must be collapsible
to provide greater visibility of the canvas.

EXAMPLE: P4 in Figure 4

properties (P3). In this sense, Table 2 shows the relationships bet-
ween patterns and task models. The “X” in the table must be read
as “The pattern P is related to the interactions of the task model
M”.

3.3.2 A Pattern Language

Patterns are not isolated entities, but rather there are relationships
between them. For instance, considering the HOW part of the des-
cription template of Toolbar pattern (P4) (Table 3): “The window
is generally located on the sides (right of left) of the editor, prefe-
rably on the left side. The window must be collapsible to provide
greater visibility of the canvas.”, we identified that Toolbar pattern
(P4) is related to two patterns: Editor Pattern (P1) and Canvas pat-
tern (P2).
The set of patterns and their relationships is commonly named

Revista Politécnica, Agosto - Octubre 2023, Vol. 52, No. 1



Web User Interface Design of a Visual Editor for Cloud Infrastructure Modeling 89

P1

P11

P2

P3

P4

P5

P6

P7

P8

P9

P10

Moqup User Interface

CloudFormation

Figure 4. Patterns identified in Moqup and CloudFormation user interfaces

by HCI community as Pattern Language (Van Welie and Van der
Veer, 2003). Indeed, Van Welie and Van der Veer (2003) establish
three main relationships between patterns:

• Specialization.- Some patterns are specializations of other
patterns. It is to say, a Pattern B inherits the basic idea of
a Pattern A.

• Association.- A pattern can be related to other patterns be-
cause they occur in a same context of the design.

• Aggregation.- A pattern aggregates several other patterns.

Considering these relationships, Pattern language in Figure 5 re-
sumes the relationships between the patterns defined in this paper.
For instance, Toolbar pattern has i) an aggregation relationship
with Editor pattern since Editor contains or aggregates the tool-
bar ii) an association relationship with Canvas pattern since they
occur in the same context of the design: the elements located in
Canvas are provided by Toolbar pattern.
The Pattern language becomes a point of reference for designing
the web editor UI since we design the UI by considering the pat-
terns and their relationships.

Figure 5. Patterns Language

3.3.3 Editor

The UI design of the web visual editor, which we have called “In-
frastructure Modeler”, is composed of 5 areas (A1, A2, A3, and
A4, A5) which are delimited with dashed lines in Figure 6. Each
area implements patterns and each pattern is indicated by its pat-

Revista Politécnica, Agosto - Octubre 2023, Vol. 52, No. 1



Carlos Iñiguez-Jarrón; Julio Sandobalin
90

Figure 6. Web Editor Wireframe

tern code. For example, area 3 contains patterns P2 and P10.
Area 1.- This area contains the project general information and
operations related to the model. This area implements the P6, P7,
P8, and P11 patterns:

• The Project actions pattern (P8) is applied in this area to
show the model managing and execution tools. Model mana-
ging tools allow to create a new infrastructure model (New
button) or open an existing one (Open button). Modeling
execution tools allow to save changes to the current model
(Save button), transform the visual model into a code script
(View Script button), and run the script on a specific infras-
tructure provider (Run button).

• The Elements arrangement pattern (P11) was applied to help
users organize the elements in the canvas. The user first se-
lects two or more elements on the canvas and then applies
one of six available options to align or arrange the elements.

• The Model name (P6) and User account (P7) patterns we-
re applied to display the name of the project model and the
registered user, respectively.

In addition, in this area, we have located a selectable list on the

right side of the area to allow the user to establish the provider
region from which the infrastructure resources will be used.
Area 2.- This area, located on the left side of the editor, imple-
ments the P4 and P9 patterns.

• The Toolbar pattern (P4) was applied to create the toolbox
section which contains the set of icons representing both the
infrastructure elements and the connectors to establish rela-
tionships between the elements. The user can easily drag and
drop the icons on the canvas.

• The Element Hierarchy pattern (P9) is applied to display
the Project Browser section which displays the infrastructu-
re elements drawn on the canvas, arranged in a hierarchical
structure where the user can easily infer which element con-
tains another.

Moreover, the design of this area is intended to be flexible in ca-
se of increasing the number of options, this is why the Accordion
design pattern has been applied to every section of this area (Tid-
well, 2010). Accordion pattern is recommended to use when there
is a lot of heterogeneous content that must fit into a small space
in the user interface. Indeed, the design solution proposed by this
pattern is placing content modules in a collinear stack of panels

Revista Politécnica, Agosto - Octubre 2023, Vol. 52, No. 1



Web User Interface Design of a Visual Editor for Cloud Infrastructure Modeling 91

that can be opened or closed in an independent way. By applying
this solution to the editor, all infrastructure elements can be orga-
nized into different categories (panels) that can be independently
opened o closed in accordance with the user’s need.
Area 3 .- This area represents the canvas where the user will model
the infrastructure by using infrastructure elements and connectors
from toolbox in Area 2. This area implements the P2 and P10
patterns.

• The Canvas pattern (P2) is applied to allow users to drag
infrastructure elements available in the toolbox (in Area 2)
and drop them on the canvas. Once the elements are in the
canvas, they can be connected by using connectors from the
Connectors category (in Area 2). The canvas behaves like a
large workspace whose dimensions (width and height) dyna-
mically grow to embrace all elements drawn on it.

• The Modeling display actions pattern (P10) is applied to im-
prove the navigation and visualization of the canvas. Users
can navigate through the entire workspace and visualize the
infrastructure diagram elements in detail.

Area 4 .- This area defines a form containing the fields related
to the properties of the selected element in the canvas. Property
explorer pattern (P3) was applied in this area. Each element has
its properties and the form adjusts to the number of properties of
each element.
Area 5.- This area displays the infrastructure code resulting from
running the infrastructure model in Area 3. Excution results pat-
tern (P5) was implemented in this area. The code is produced once
the user has pressed the “View Script” or the “Run” buttons loca-
ted in Area 1. JSON or YAML are formats in which code can be
presented considering that these formats are commonly used to
specify infrastructure.

4. CONCLUSIONS

This article describes the design of a visual editor as a generic web
user interface for modeling and provisioning cloud IT infrastruc-
ture. The visual editor design is intended to provide an interactive
graphical environment to reduce the complexity of defining infras-
tructure elements through code.
The design of the user interface is guided by the User Centered
Design methodology, using two techniques under the umbrella of
this methodology: Task Analysis and User Interface Design Pat-
terns. The former was applied to create task models that represent
the interactions users perform when modeling/provisioning the in-
frastructure, and the latter to compose the UI design.
Based on the task models, expressed in the ConcurTaskTree (CTT)
notation, the user interfaces of online tools oriented towards crea-
ting software/hardware and infrastructure diagrams were studied.
The purpose of this study was to identify the designs used by ex-
pert designers to accomplish the tasks. This study was necessary
since no defined user interface design patterns were found for the
design of graphical editors. Indeed, a contribution of this article
is to define a set of patterns intended to design visual editor user
interfaces. Furthermore, a pattern language was built considering
the relationships between the defined patterns. These relationships

provide a logical way how to compose a user interface using pat-
terns. Finally, the patterns and their relationships were used to
compose the layout of the visual editor’s user interface.
The proposed design together with the task models and the defined
design patterns become reference points for designing user inter-
faces in this domain. In future work, it is proposed to evaluate the
designed user interface through tests with users. User feedback
will help refine the design. Refined design can be implemented
with standard web technologies (HTML, JavaScript, CSS)

ACKNOWLEDGMENTS

This work was supported by Escuela Politécnica Nacional, Ecua-
dor, under PII-DICC-2021-02 and PII-DICC-2021-01 projects.

REFERENCES

AWS (2021a). AWS CloudFormation Designer interface
overview. From: https://docs.aws.amazon.
com/AWSCloudFormation/latest/UserGuide/
working-with-templates-cfn-designer-overview.
html. Accessed: 2022-07-15.

AWS (2021b). Regions and zones - amazon elastic
compute cloud. From: https://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/
using-regions-availability-zones.html.
Accessed: 2022-05-14.

Firesmith, D. (2019). System resilience: What exactly is it?
From: https://insights.sei.cmu.edu/blog/
system-resilience-what-exactly-is-it/.
Accessed: 2022-02-10.

IONOS (2021). Managed Services Provider: ¿qué es un
proveedor de Managed Services? From: https:
//www.ionos.es/digitalguide/servidores/
know-how/managed-service-provider-msp/.
Accessed: 2022-07-15.

Kolovos, D. S., García-Domínguez, A., Rose, L. M., and Paige,
R. F. (2015). Eugenia: Towards disciplined and automated
development of gmf-based graphical model editors. Softwa-
re Systems Modeling, 16:229–255.

MacDonald, D. (2019). Practical ui patterns for design systems:
Fast-track interaction design for a seamless user experien-
ce. Apress.

Microsoft (2021). Azure regions and availability zones | mi-
crosoft docs. From: https://docs.microsoft.
com/en-us/azure/availability-zones/
az-overview. Accessed: 2022-05-10.

Paternò, F. (2003). ConcurTaskTrees: An Engineered Notation for
Task Models. The Handbook of Task Analysis for Human-
Computer Interaction, pages 483–503.

RedHat (2020). What is provisioning? From: https:
//www.redhat.com/en/topics/automation/
what-is-provisioning. Accessed: 2022-07-14.

Revista Politécnica, Agosto - Octubre 2023, Vol. 52, No. 1

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer-overview.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer-overview.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer-overview.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer-overview.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://insights.sei.cmu.edu/blog/system-resilience-what-exactly-is-it/
https://insights.sei.cmu.edu/blog/system-resilience-what-exactly-is-it/
https://www.ionos.es/digitalguide/servidores/know-how/managed-service-provider-msp/
https://www.ionos.es/digitalguide/servidores/know-how/managed-service-provider-msp/
https://www.ionos.es/digitalguide/servidores/know-how/managed-service-provider-msp/
https://docs.microsoft.com/en-us/azure/availability-zones/az-overview
https://docs.microsoft.com/en-us/azure/availability-zones/az-overview
https://docs.microsoft.com/en-us/azure/availability-zones/az-overview
https://www.redhat.com/en/topics/automation/what-is-provisioning
https://www.redhat.com/en/topics/automation/what-is-provisioning
https://www.redhat.com/en/topics/automation/what-is-provisioning


Carlos Iñiguez-Jarrón; Julio Sandobalin
92

Sandobalin, J. (2017). A model-driven approach to continuous
delivery of cloud resources. In Braubach, L., Murillo,
J. M., Kaviani, N., Lama, M., Burgueño, L., Moha, N., and
Oriol, M., editors, Service-Oriented Computing - ICSOC
2017 Workshops - ASOCA, ISyCC, WESOACS, and Satellite
Events, Málaga, Spain, November 13-16, 2017, Revised Se-
lected Papers, volume 10797 of Lecture Notes in Computer
Science, pages 346–351. Springer.

Sandobalin, J., Insfran, E., and Abrahao, S. (2017). End-to-end
automation in cloud infrastructure provisioning. In Informa-
tion Systems Development: Advances in Methods, Tools and
Management - Proceedings of the 26th International Confe-
rence on Information Systems Development, ISD 2017.

Sandobalin, J., Insfran, E., and Abrahão, S. (2019). Ar-
gon: A model-driven infrastructure provisioning tool. In
2019 ACM/IEEE 22nd International Conference on Mo-
del Driven Engineering Languages and Systems Companion
(MODELS-C), pages 738–742. IEEE.

Seffah, A. (2015). Patterns of HCI design and HCI design of pat-
terns: bridging HCI design and model-driven software en-
gineering. Springer.

Tidwell, J. (2010). Designing interfaces: Patterns for effective
interaction design. O’Reilly Media, Inc.

Van Welie, M. and Van der Veer, G. C. (2003). Pattern Langua-
ges in Interaction Design: Structure and Organization. In
Proceedings of interact, pages 1–5.

Wallach, D. and Scholz, S. C. (2012). User-Centered Design: Why
and How to Put Users First in Software Development. pages
11–38. Springer, Berlin, Heidelberg.

Weigold, M., Barzen, J., Breitenbücher, U., Falkenthal, M., Ley-
mann, F., and Wild, K. (2020). Pattern views: Concept and
tooling for interconnected pattern languages. In Dustdar, S.,
editor, Service-Oriented Computing, pages 86–103, Cham.
Springer International Publishing.

Wickham, C. (2018). Azure Vs. AWS termino-
logy. From: http://www.v-wiki.net/
azure-vs-aws-terminology/. Accessed: 2022-06-
24.

BIOGRAPHIES

Carlos, Iñiguez, is Professor in
informatics at Escuela Politécnica
Nacional (EPN), Ecuador. He has
a Ph.D. in Computer Science from
Universitat Politècnica de València
(Spain) where he was a member
of the Genomic Group at PROS
Research Centre. He holds a Master
Degree on Web Engineering (2013).

Julio, Sandobalín, is Assistant Pro-
fessor at the Department of Infor-
matics and Computer Science, Es-
cuela Politécnica Nacional in Ecua-
dor. He received his Ph.D. in Com-
puter Science from Universitat Po-
litècnica de València. His research
areas of interest are Model-Driven
Engineering, Empirical Software En-
gineering, DevOps, and Agile.

Revista Politécnica, Agosto - Octubre 2023, Vol. 52, No. 1

http://www.v-wiki.net/azure-vs-aws-terminology/
http://www.v-wiki.net/azure-vs-aws-terminology/


Web User Interface Design of a Visual Editor for Cloud Infrastructure Modeling 93

Appendix A.

NAME: Editor Pattern

• CODE: P1

• WHAT: Shows the workspace for creating or editing models.

• WHEN: Users require a workspace to make models that in-
clude graphic elements. The user is free to locate the graphic
elements in the workspace, as well as move them and even
configure their intrinsic properties.

• HOW: Show a window in the entire space of the web brow-
ser. The window is arranged in panels that allow users to ma-
nipulate the elements in the model.

• EXAMPLE: P1 in Figure 4

NAME: Canvas Pattern

• CODE: P2

• WHAT: Show a canvas in which elements can be located in
X,Y coordinates and where the user can move freely.

• WHEN: The user needs to create a model by positioning ele-
ments and relating them with connectors.

• HOW: Place the canvas in the center of the Editor Pattern
(P1). Allow user to drop elements from the Toolbar pattern
(P4). Allow the canvas to grow in dimension depending on
the elements positioned on it. Each element on the canvas
can have a context menu to indicate the actions to perform
on the element.

• EXAMPLE: P2 in Figure 4

NAME: Property Explorer Pattern

• CODE: P3

• WHAT: Allows the user to enter information related to the
properties of an element.

• WHEN: Elements in the diagram contain metadata that must
be specified by the user.

• HOW: When selecting an element in the diagram, display a
form containing fields to set value to each element property.
A property is commonly know as element metadata.

• EXAMPLE: P3 in Figure 4

NAME: Execution Results Pattern

• CODE: P5

• WHAT: Shows the results of executing a process.

• WHEN: The user needs to visualize the result of a process
execution. The result can be displayed graphically or tex-
tually.

• HOW: Show a window with the result (graphical or textual)
of the process execution. The window can be collapsible, ho-
wever, the window must be visible after the user execute the
process.

• EXAMPLE: P5 in Figure 4

NAME: Model Name Pattern

• CODE: P6

• WHAT: Shows active model name.

• WHEN: The active diagram/model drawn in the Editor (P1)
can be named to be saved. To open the diagram/model, the
user can identify the diagram by its name.

• HOW: Show the name of the diagram/model in a visible part
of the Editor(P1). The name text is displayed as primary in-
formation and is generally located in the upper left or cen-
ter of the editor considering the user’s hierarchical reading
behavior. If the model is new, its name can be shown as “Un-
titled...”.

• EXAMPLE: P6 in Figure 4

NAME: User Account Pattern

• CODE: P7

• WHAT: Shows the user account who has logged in to the
Editor (P1).

• WHEN: When the diagram is saved, it must be stored in the
private repository of the registered user. A user can only open
the diagrams saved in his/her account.

• HOW: Show the information of the registered user. The in-
formation can be represented in a graphical o textual way
(e.g., the user’s name, initials, or a circular avatar-like icon).
Such representation must be visible in the Editor(P1). When
the user interacts with the representation, the user’s account
details must be displayed.

• EXAMPLE: P7 in Figure 4

NAME: Project Actions Pattern

• CODE: P8

• WHAT: Perform actions on the model of the active project

• WHEN: Users can perform several actions over the active
project (e.g., save, export model in image formats, execute
some process belonging to the project).

• HOW: Group the actions by their semantic affinity. The ac-
tion groups must be located at the sides (top, bottom, right,
left) of the Editor(P1). The set of actions can be displayed in
a horizontal or vertical area. Such an area can cover the whole
width or height of the editor. Actions can be represented with
icons or icons and text. Some actions related to the project
can be auto-save feedback, export, share, view source, etc.

Revista Politécnica, Agosto - Octubre 2023, Vol. 52, No. 1



Carlos Iñiguez-Jarrón; Julio Sandobalin
94

• EXAMPLE: P8 in Figure 4

NAME: Element Hierarchy Pattern

• CODE: P9

• WHAT: Allows the user to visualize in a summarized and
organized way the elements included in the model

• WHEN: The model contains elements organized in a hierar-
chical way. The user needs to visualize the list of elements
included in the model, avoiding the visual overload of ele-
ments drawn in the model.

• HOW: Show a panel containing a hierarchical list of ele-
ments drawn on the Canvas (P2). The panel can be collapsed
or expanded to improve the user’s view of the Canvas. When
selecting a panel item, provide information about actions that
can be performed on the item. For example, when selecting
an item from the list, a contextual dialog can be displayed
with the action "navigate to item"within the Canvas.

• EXAMPLE: P9 in Figure 4

NAME: Modeling Display Actions Pattern

• CODE: P10

• WHAT: Perform actions related to the model and its ele-
ments

• WHEN: The user needs to perform actions on the Can-
vas(P2) such as moving around the diagram, zooming in/out
and redoing/undoing changes to the elements that make up
the diagram.

• HOW: Place an icon menu on the side of the canvas (in the
bottom right corner, preferably). Menu icons should be repre-
sentative of actions like zoom in/out, redo/undo, layers, full
screen, move, select, etc. When icons get focus, they should
display information about the action the icon represents.

• EXAMPLE: P10 in Figure 4

NAME: Element Arrangement Pattern

• CODE: P11

• WHAT: Performs automatic actions related to the arrange-
ment of elements on the Canvas.

• WHEN: The elements on the canvas can be rearranged to
improve their visualization in the model. Although the ele-
ments can be arranged manually, the Editor(P1) must support
the user with automatic actions to improve the efficiency of
organizing the elements in the model.

• HOW: Include actions to align elements or sort them

• EXAMPLE: P11 in Figure 4

Revista Politécnica, Agosto - Octubre 2023, Vol. 52, No. 1


	INTRODUCTION
	RELATED WORKS
	EDITOR USER INTERFACE DESIGN
	Context of Use
	Requirements specification
	Design of solution
	Patterns
	A Pattern Language
	Editor


	CONCLUSIONS

