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Abstract: A nonparametric test based on bootstrap for detecting multicollinearity is proposed: MTest. This test gives
statistical support to two of the most famous methods for detecting multicollinearity in applied work: Klein’s rule and
Variance Inflation Factor (VIF for essential multicollinearity). As part of the procedure, MTest generates a bootstrap
distribution for the coefficient of determination which: i) lets the researcher assess multicollinearity by setting a statis-
tical significance α , or more precisely, an achieved significance level (ASL) for a given threshold, ii) using a pairwise
Kolmogorov-Smirnov (KS) test, establishes a guide for an educated removal of variables that are causing multicolli-
nearity. In order to show the benefits of MTest, the procedure is computationally implemented in a function for linear
regression models. This function is tested in numerical experiments that match the expected results. Finally, this paper
makes an application of MTest to real data known to have multicollinearity problems and successfully detects multicolli-
nearity with a given ASL.
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MTest: una Prueba bootstrap para Multicolinealidad
Resumen: Se propone una prueba no paramétrica basada en bootstrap para detectar multicolinealidad: MTest. Esta prueba
brinda soporte estadístico a dos de los métodos más famosos para detectar multicolinealidad en trabajo aplicado: la
regla de Klein y el Factor de Inflación de Varianza (VIF por multicolinealidad esencial). Como parte del procedimiento,
MTest genera una distribución bootstrap para el coeficiente de determinación que: i) permite al investigador evaluar la
multicolinealidad al establecer una significancia estadística α , o más precisamente, un nivel de significancia alcanzado
(ASL) para un umbral dado, ii) utilizando una prueba de Kolmogorov-Smirnov (KS) por parejas, establece una guía para
una eliminación informada de las variables que están causando multicolinealidad. Para mostrar los beneficios de MTest,
el procedimiento se implementa computacionalmente en una función para modelos de regresión lineal. Esta función
se prueba en experimentos numéricos que coinciden con los resultados esperados. Finalmente, este documento hace
una aplicación de MTest a datos reales que se sabe que tienen problemas de multicolinealidad y detecta con éxito la
multicolinealidad con un ASL dado.
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1. INTRODUCTION

When predictors of a regression model are correlated, multicolli-
nearity appears. This may be a problem depending on the degree
of correlation in the dataset which may be stated using the deter-
minant of the predictors. If the predictors are linearly dependent,
the determinant of the correlation matrix is equal to 0 (perfect mul-
ticollinearity); if the determinant is equal to 1, there is no multico-
llinearity (Stein, 1975).
Testing for multicollinearity has been studied from parametric ap-
proaches and rule of thumb proposals. Farrar and Glauber (1967)
is a seminal work in the first case. They propose three different
ways to do the test.
In the first one, if the determinant of the correlation of the ma-
trix of the predictors is almost equal to 1, then there is no mul-

ticollinearity. It relies on having observations that come from an
orthogonal, multivariate-normal distribution. This excludes the ca-
se when dummy variables are included. The second test they pro-
pose starts by computing the principal minors of the correlation
matrix of the predictors. Each minor is divided by the determinant
of the correlation of the matrix, this quotient has an F-distribution
if the underlying distributions are normal. In the third case, they
use the partial correlation coefficients, ri j of the determinant of
the correlation of the matrix of the predictors. ri j are compared to
their off-diagonal elements and use a t-test to make a comparison.
The first and second proposals in Farrar and Glauber (1967)
share the fact that the underlying distributions are normal or
multivariate-normal. This may be a limitation in real life applica-
tions where dummy variables, skewness and asymmetry are pre-
sent in data. Then, a nonparametric approach can be useful to over-
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come this issue.
Some authors claim that the problem of multicollinearity should
not be an issue (Leamer, 1983; Achen, 1982). They emphasize that
even in the presence of multicollinearity, estimators keep being
best linear unbiased estimator (BLUE) which is actually the case.
So they say that the real problem is a matter of sample size. They
claim that if the sample size is large enough, then multicollinea-
rity would not be a problem. Sample size is sometimes restricted
to the field of study. In economics, for example, time series of so-
me indicators are not long enough and statistical modeling may
be challenging. Nonetheless, this is changing with the availability
of open source projects to access to economic data such as the
World Development Indicators (The World Bank, 2021). Around
the time authors like Leamer (1983) and Achen (1982) stated their
concerns, the scientific community lacked of more data or com-
puting power, so their claim needed careful attention. But things
have change in regards to computing power and data.
With the emerging of the Big Data era, sample size is becoming
less of an issue, but the problem of multicollinearity remains (Di-
nov, 2016). The problem is that the presence of multicollinearity
makes the estimated variances and covariances inflated. In this
context, wider confidence intervals are obtained which makes it
easier not to reject the null hypothesis of the coefficients in the
predictors. It follows that there may be one or more coefficients
with no statistical significance but with a high coefficient of deter-
mination (Gujarati et al., 2012).
Jaya et al. (2020) make a comparison of different machine lear-
ning techniques in regression such as Ridge and Lasso to obtain
the technique that avoids multicollinearity. In order to detect mul-
ticollinearity however, they use Variance Inflation Factors (VIF),
which can be seen as a rule of thumb approach.
In R there are several packages that try to detect multicollinea-
rity: Imdadullah et al. (2016) and Salmerón-Gómez et al. (2021b)
are two of the most recent ones. Salmerón-Gómez et al. (2021b)
propose a detection method based on a perturbation of the obser-
vations but they do not perturb dummy variables. Imdadullah et al.
(2016) make a review of these methods and create an R package to
make overall (determinant, R-squared, among others) and indivi-
dual (Klein’s rule, VIF, among others) multicollinearity diagnosis.
Klein’s rule and VIF can be derived from a global and auxiliary
coefficients of determination of a regressions model and a rule of
thumb is applied. In this sense, both methods consider the coeffi-
cients of determination fixed when it can actually be considered a
random variable (Carrodus and Giles, 1992; Koerts and Abraham-
se, 1969). If by bootstrapping we let the global and auxiliary
coefficients of determination be random variables, the detection
of multicollinearity goes one step further. This work takes the two
of the most widely used individual rule of thumb methods, Klein’s
rule and VIF, and places them in a bootstrap context in order to ha-
ve a statistical test to assess multicollinearity. This proposal makes
it possible to have a null hypothesis and an alternative hypothesis
for the presence of multicollinearity, and depending on the signi-
ficance level, the researcher could reach a conclusion.
This paper is organized as follows. In Section 2, we detail the VIF,
Klein’s rule, their relationship and recall the bootstrap concept.
Section 3 states the null and alternative hypothesis of the proposed
MTest with it corresponding procedure. In Section 4, we set up
a simulation study to analize MTest under a controlled situation.

In Section 5, we apply MTest to a widely used dataset known to
have multicollinearity issues. Finally, in Section 6 we give some
conclusions.

2. NOTATION AND CONCEPTS

2.1 General Setup

Consider the regression model

Yi = β0X0i +β1X1i + · · ·+βpXpi + ui (1)

where i = 1, . . . ,n, X j,i are the predictors with j = 1, . . . , p, X0 = 1
for all i and ui is the gaussian error term.
In order to describe Klein’s rule and VIF methods, we need to
define auxiliary regressions associated to model (1). An example
of an auxiliary regressions is:

X2i = γ1X1i + γ3X3i + · · ·+ γpXpi + ui.

In general, there are p auxiliary regressions and the dependent va-
riable is omitted in each auxiliary regression. Let R2

g be the coef-
ficient of determination of (1) and R2

j the jth coefficient of deter-
mination of the jth auxiliary regression.

2.2 VIF

A common way practitioners compute the VIF method is by:

V IFj =
1

1−R2
j

(2)

for every auxiliary regression j = 1, . . . , p. It states that multico-
llinearity is generated by covariate X j if V IFj > 101 (Gujarati et
al., 2012). The case j = 0 is not considered since (2) detects ap-
proximate multicollinearity of the essential type. This means that
the intercept is excluded. For more details and methods on detec-
ting essential and non-essential multicollinearity, see Salmerón-
Gómez et al. (2020).

2.3 Klein’s rule

Klein’s rule compares the R2
j coefficient of determination of the

jth auxiliary regression with R2
g. The rule states that if R2

j > R2
g

then the X j variable originates multicollinearity.
Klein stated that Intercorrelation ... is not necessarily a problem
unless it is high relative to the over-all degree of multiple correla-
tion . . . (Klein, 1962). It means that there is an implicit threshold
(R2

g) and Klein’s rule should be used along with VIF as they may
be complementary since there will be cases when VIF report a
multicollinearity problem, but Klein’s rule does not.

2.4 Relationship between the VIF and Klein’s rule

It is possible to link both methods by the expression

10 =
1

1−R2
j

1Some literature also uses 3 or 5 as a threshold.
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R2
j = 0.90

which means that according to the VIF method, variable X j origi-
nates multicollinearity if R2

j ≥ 0.90.
Different contradictions that may exist between the Klein’s ru-
le and the VIF. For example, if R2

g = 0.85 and some R2
j = 0.88,

Klein’s method would detect multicollinearity but VIF will not.
As another example, if R2

j = 0.94 and R2
g = 0.98, VIF will detect

multicollinearity but Klein will not.
It should be noted that the value 0.90 is not fixed in all applica-
tions. For example, works like Marcoulides and Raykov (2019)
tests several values as a VIF threshold. Our proposal, MTest has
0.90 threshold by default but can be changed if the researcher de-
cides another one.

2.5 Bootstrap

The bootstrap resampling technique was introduced by Efron
(1992), in his seminal work Bootstrap methods: Another look at
the jackknife. It is a computationally intensive method, without
strict structural assumptions in the underlying random process that
generates the data. It is used to obtain approximations of the dis-
tribution of an estimator, of the bias, the variance, standard error
and confidence intervals. In a normal experiment, repeating the
experiment enables us to compute standard errors, the bootstrap
principle lets us simulate the replication by resampling.
If the resampling mechanism is chosen appropriately, then the re-
sampling, together with the sample in question, is expected to re-
flect the original relationship between the population and the sam-
ple. The advantage is that we can now avoid the problem of having
to deal with the population, and instead we can use the sample
and resamples, to address statistical inference questions regarding
the unknown quantities in the population. The bootstrap principle
addresses the problem of not having complete knowledge of the
population, to make an inference about the estimator θ̂ , schemati-
cally:

• The first step consists of the construction of an estimator of
an unknown probability distribution F , F(F̂) from the avai-
lable observations X1, . . . ,Xn, which provides a representative
image of the population2.

• The next step consists of the generation of random variables
X∗

1 , . . . ,X∗
n of the estimator F̂ , which fulfills the role of the

sample for the bootstrap version of the original problem.

Therefore, the bootstrap version of the estimator θ̂ based on the
original sample X1, . . . ,Xn is given by θ̂ ∗, obtained by substituting
X∗

1 , . . . ,X∗
n .

The above setup is known as the nonparametric bootstrap, but it
also has a parametric approach where one can assume F belon-
ging to a parametric model {Fθ : θ ∈ Θ} where Θ is the parameter
space. In this case, F = F

θ̂
where θ̂ is an estimator of θ . For mo-

re details on parametric and nonparametric bootstrap, see Godfrey
(2009).
It must be noted that the bootstrap also has some drawbacks. Ho-
rowitz (2001) highlights two important problems. The first one is

2Let X be a random variable, F the cumulative distribution function and F̂ is a
non parametric functional estimator of F .

instrumental variables estimation with ill correlated instruments
and predictors. In this case, bootstrap approximations fail to be
useful. The second problem is when the variance of the bootstrap
estimator is high. This work does not fit in either of these cases
since it is not related to instrumental variables and the variance of
the bootstrap estimator is finite and well behaved.

3. MTEST

Given a regression model, Mtest is based on computing estima-
tes of R2

g and R2
j from nboot bootstrap samples obtained from the

dataset, R2
gboot

and R2
jboot

respectively.
Therefore, in the context of MTest, the VIF rule translates into:

H0 : µR2
jboot

≥ 0.90,

and

Ha : µR2
jboot

< 0.90.

We seek an achieved significance level (ASL)

ASL = ProbH0{µR2
jboot

≥ 0.90}

estimated by

ÂSLnboot = #{µR2
jboot

≥ 0.90}/nboot

In a similar manner, the Klein’s rule translates into:

H0 : µR2
jboot

≥ µR2
gboot

,

and

Ha : µR2
jboot

< µR2
gboot

.

We seek an achieved significance level

ASL = ProbH0{µR2
jboot

≥ µR2
gboot

}

estimated by

ÂSLnboot = #{µR2
jboot

≥ µR2
gboot

}/nboot .

It should be noted that this set up lets us formulate VIF and Klein’s
rules in terms of statistical hypothesis testing.

3.1 MTest: the algorithm

R2
gboot

and R2
jboot

are the distributions of R2
g and R2

j induced by
applying the bootstrap procedure to the dataset. Achieved signi-
ficance level is computed for the VIF and Klein’s rule. In the fo-
llowing we describe the procedure step by step:

1. Create nboot samples from original data with replacement of
a given size (nsam).

2. Compute R2
gboot

and R2
jboot

from each nboot samples. This out-
puts a Bnboot×(p+1) matrix.

3. Compute ÂSLnboot for the VIF and Klein’s rule.
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Note that the matrix Bnboot×(p+1) allows us to inspect results in de-
tail and make further tests such as boxplots, pariwise Kolmogorov-
Smirnov (KS) of the predictors and so on.

4. NUMERICAL EXPERIMENTS

4.1 Experiment 1

4.1.1 Data simulation

In this section, we implement the procedure described in Section
3.1 that allows us to test the hypothesis. We start by simulating
1000 data points according to the following regression:

Yi = 10−5X1i + 3X2i + 9X3i + ε̂i

where ε̂ ∼N(0,3). X1, X3 and X3 are simulated using MASSR pac-
kage (Venables and Ripley, 2002) with the following correlation
structure:  1.00 −0.945 0.3

−0.945 1.00 −0.5
0.30 −0.50 1.0

 .

From this correlation structure it is expected that X1i and X2i may
cause multicollinearity due to the high correlation between them
(−0.945).
The code for the data generation process is detailed in Appendix
A. The code for MTest is detailed in Appendix B. The function is
defined with four parameters:

• datos: A p + 2 dimensional data frame that includes the
dependent variable.

• nboot: Number of bootstrap replicates. This is the nboot pa-
rameter described in Section 3.1, the default nboot = 500.

• nsam: Sample size in the bootstrap procedure. When nsam=
NULL (default), then nsam = nrow(datos)*3.

• trace: Logical. If TRUE then the iteration number out of a
total of nboot is printed. The default value is FALSE.

• seed: A numeric value that sets the seed value of the proce-
dure. The default value is NULL.

• valor_vif: A numeric value that sets threshold for in the
VIF rule. The default value is valor_vif=0.9

4.1.2 Testing multicollinearity

Table 1 shows the R2 for the global regression and auxiliary re-
gressions in the first row, VIF values are presented in the second
row and Klein’s rule can be computed with this information which
is shown in the third row. The fourth and fifth row of Table 1
present the MTest results by computing ÂSLnboot=1000 for VIF and
Klein’s rules.
From a traditional usage of the rules, the Klein’s rule suggests
that X2 is a variable that causes multicollinearity since its auxi-
liary regression R2

X2
is greater than the global R2

g. Kleins’s rule is
presented with ∗ denoting the variables that the rule identifies as a
problem and with • the variables that do not.

In the VIF case, if the threshold is equal to 10, this method sug-
gests that X1 and X2 causes multicollinearity. Both rules detect
multicollinearity problems as expected.
MTest is also presented in Table 1 with ASL values computed
with nboot = 1000, ÂSLnboot for VIF and Klein are 1 for predic-
tors X1,X2 and 0 for X3. This implies that we cannot reject the
null hypothesis stated in 3.1. In other words, this means that X1
and X2 also yield multicollinearity problems according to MTest
which confirms the results in the application of traditional VIF and
Klein’s rules.

Table 1. R2 for the global regression and auxiliary regressions are presented in the
first row. VIF values are presented in the second row and Kleins’s rule is

presented with ∗ denoting the variables that the rule identifies as a problem and
with • the variables that do not.

Y X1 X2 X3

R2 0.9073 0.9308 0.9432 0.5273
V IF 14.4583 17.606315 2.1158
Klein ∗ ∗ •

VIF: ÂSLnboot 1 1 0
Klein: ÂSLnboot 1 1 0

Boxplots of R2
gboot

and R2
jboot

are presented in Figure 1. They show
that the bootstrap distributions are centered at their means for Y ,
X1, X2 and X3, respectively are 0.9073, 0.9308, 0.9432, 0.5274. We
need to leave all variables in the initial model, the MTest function
also gives us a clear idea of the variability in global R2

g: in our
simulation, 0.9041 ≤ R2

g ≤ 0.9106.
This bootstrap replicates open the possibility of applying other
testing methods to check how statistically different the values are.
For example, we apply a Kolmogorov-Smirnov (KS) test.
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Figure 1. Boxplot results of the bootstrap procedure contained in
Bnboot×(p+1)

A pairwise KS matrix of p-values is presented in Tables 2 and 3,
we set the significance level α = 0.05. The code for computing the
pairwise KS matrix is detailed in Appendix C. Table 2 shows the
pairwise p-values for the equality hypothesis of the nboot replicates
of variables in the rows compared to the variables in the columns.
For example, the pairwise p-value between X2 and X3 (0) is lower
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than α which rejects the equality hypothesis between them. Note
that all the off-diagonal p-values also reject the hull hypothesis.

Table 2. Pairwise KS p-values of bootstrap samples Bnboot×(p+1). two.sided is
used as the alternative hypothesis.

Y X1 X2 X3

Y 1 0 0 0
X1 0 1 0 0
X2 0 0 1 0
X3 0 0 0 1

Table 3 shows the pairwise p-values of Bnboot×(p+1). The null hy-
pothesis is that the Cumulative Distribution Function of the varia-
ble in the row does lie below that of the variable in the column.
In other words, we are testing if R2 values in the rows are greater
than the ones in the columns. Note that the first column is similar
to testing H0 : µR2

Xjboot

≥ µR2
Yboot

. For example, the first column tells

us that X1 and X2 are greater than Y which is consistent with our
previous findings.

Table 3. Pairwise KS p-values of bootstrap samples Bnboot×(p+1) . greater is
used as the alternative hypothesis.

Y X1 X2 X3

Y 1 0 0 1
X1 1 1 0 1
X2 1 1 1 1
X3 0 0 0 1

Once candidate variables that may be causing multicollinearity
are identified, some researchers decide to remove one or more of
them. Note that results in Table 3 can also guide our decision on
choosing whether X1 or X2 should be removed from the regres-
sion. If we take the sum over the rows in Table 3, this value gives
us a metric that could be used to prioritize the removal of the va-
riables. This is a metric of how much the variable in the row is
greater than the one in the column. In this example, the row sum
for X2 is 4 and for X1 is 3. It then suggests that X2 is the one that
should be removed.

4.2 Experiment 2

This experiment studies MTest vs rule of thumb VIF in (2) and
contrasts its results. Following Salmerón-Gómez et al. (2018) and
Salmerón-Gómez et al. (2021a), data is simulated as:

X j =
√

1−λ 2Wj +λWp,

where j = 2, . . . , p with p = 3,4,5, Wj ∼ N(10,100), λ ∈
{0.8,0.82,0.84, . . . ,0.98} and n ∈ {20,100,200}. This setup let us
specify different grades of collinearity (λ ), different sample sizes
(n) and different number of covariates (p).
Table 4 shows results for p = 4 and Appendix D for p = 3 (Table
9) and p = 4 (Table 10). We can see that all VIF troubling values
are also detected by MTest, but there are cases where MTest de-
tects multicollinearity and VIF does not (VIF threshold is 10). For
example, with α = 0.05, if λ = 0.94 and n = 100, MTest detects
X2 as a variable with potential multicollinearity but VIF does not
(V IF = 8.5). All such these cases are in bold.

Table 4. Simulation results for VIF: ÂSLnboot and VIF for p = 4. Different
sample sizes (n) and grades of collinearity (λ ).

VIF: ÂSLnboot VIF
n λ X1 X2 X3 X4 X1 X2 X3 X4
20 0.80 0.00 0.00 0.00 0.02 4.2 3.1 3.9 5.8

0.82 0.00 0.00 0.00 0.04 4.5 3.4 3.3 6.0
0.84 0.00 0.00 0.00 0.12 5.1 3.8 3.7 6.9
0.86 0.00 0.00 0.00 0.28 5.8 4.3 4.3 8.0
0.88 0.05 0.00 0.00 0.51 6.7 5.0 5.1 9.6
0.90 0.21 0.03 0.04 0.78 8.0 6.0 6.2 11.9
0.92 0.52 0.17 0.21 0.94 9.9 7.5 7.8 15.3
0.94 0.86 0.58 0.69 0.99 13.2 10.0 10.7 21.0
0.96 1.00 0.95 0.99 1.00 19.6 15.0 16.4 32.5
0.98 1.00 1.00 1.00 1.00 38.9 30.1 34.0 67.6

100 0.80 0.00 0.00 0.00 0.00 3.1 2.7 2.7 6.5
0.82 0.00 0.00 0.00 0.05 2.8 3.1 3.3 8.1
0.84 0.00 0.00 0.00 0.30 3.1 3.4 3.6 9.3
0.86 0.00 0.00 0.00 0.81 3.5 3.9 4.1 10.8
0.88 0.00 0.00 0.00 0.99 4.0 4.4 4.7 12.8
0.90 0.00 0.00 0.00 1.00 4.7 5.3 5.6 15.6
0.92 0.00 0.00 0.00 1.00 5.7 6.5 6.9 19.8
0.94 0.01 0.13 0.23 1.00 7.5 8.5 9.0 26.8
0.96 0.83 0.97 0.99 1.00 11.1 12.4 13.3 40.8
0.98 1.00 1.00 1.00 1.00 21.7 24.4 26.2 82.6

200 0.80 0.00 0.00 0.00 0.00 3.5 2.9 2.3 7.4
0.82 0.00 0.00 0.00 0.00 3.4 3.1 3.2 8.3
0.84 0.00 0.00 0.00 0.19 3.7 3.4 3.6 9.5
0.86 0.00 0.00 0.00 0.94 4.2 3.9 4.0 11.1
0.88 0.00 0.00 0.00 1.00 4.9 4.5 4.7 13.2
0.90 0.00 0.00 0.00 1.00 5.8 5.4 5.6 16.2
0.92 0.00 0.00 0.00 1.00 7.2 6.8 7.0 20.8
0.94 0.21 0.05 0.16 1.00 9.5 9.0 9.3 28.3
0.96 1.00 1.00 1.00 1.00 14.0 13.6 13.8 43.5
0.98 1.00 1.00 1.00 1.00 27.7 27.3 27.7 89.0

5. APPLICATION

This section applies the proposed method to a dataset available in
Longley (1967) and is used to show problems of multicollinearity.
It is a time series from 1947 to 1962 where

• y: number of people employed, in thousands.

• x1: GNP implicit price deflactor.

• x2: GNP, millions of dollars.

• x3: number of people unemployed in thousands.

• x4: number of people in the armed forces.

• x5: non institutionalized population over 14 years of age.

• time: year.

The regression model is given by

y = φ0 +φ1x1 +φ2x2 +φ3x3 +φ4x4 +φ5x5 +φ6time (3)

its global R2
g = 0.996 and its estimation is:

Table 5 shows the estimation of coefficients in equation (1). The
p-value of the F statistic is closely equal to 0 which means that
we can reject the null hypothesis that φ1,φ2, . . . ,φp = 0. As men-
tioned in Gujarati et al. (2012), one symptom of the presence of
multicollinearity is when we have a high R2 and a few significant
individual predictors. Which is the case in this application since
out the six predictors, only three are statistically significant.
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Table 5. Coefficient estimation of the application model: Equation (3).

φi in Equation (3)
(Intercept) 67271.28∗

(23237.42)
x1 -2.05

(8.71)
x2 -0.03

(0.03)
x3 -1.95∗∗

(0.48)
x4 -0.96∗∗

(0.22)
x5 0.05

(0.23)
time 1585.16∗

(482.68)

R2 0.9955
Adj. R2 0.9921
Num. obs. 15
RMSE 295.62

Figure 2 shows the bootstrap replicates of the dependent variable
(global) and the predictors (x1 to time ). Boxplots suggest that x2,
x5 and time are candidate variables that generate multicollinearity
problems. Furthermore, x1, x3 and x4 seem not to be greater than
the dependent variable.
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Figure 2. Boxplot of MTest results

Table 6 shows the results in a similar manner that the one shown
in 1. According to the traditional VIF rule, all the variables yield
multicollinearity problems except in x4 (VIF threshold equal to
10). Traditional Klein’s rule shows a multicollinearity problem in
predictors x2, x5 and time.
The MTest given by VIF: ÂSLnboot shows multicollinearity pro-
blems in the same predictors that the traditional VIF did, but the
value 0.003 gives us a confidence metric to reject the null hypothe-
sis H0 : µR2

x4boot
≥ 0.90.

Setting α = 0.05, the MTest given by Klein’s: ÂSLnboot shows
multicollinearity problems in predictors x1,x2, x5 and time. That
is, x1 was identified as a predictor with potential multicollinea-

Table 6. R2 for the global regression and auxiliary regressions are presented in the
first row. VIF values are presented in the second row and Kleins’s rule is

presented with ∗ denoting the variables that the rule identifies as a problem and
with • the variables that do not.

x1 x2 x3 x4 x5 time

R2 0.992 0.999 0.969 0.741 0.997 0.999
V IF 130 1491 32 4 348 746
Klein • ∗ • • ∗ ∗

VIF: ÂSLnboot 1 1 1 0.003 1 1
Klein: ÂSLnboot 0.065 1 0 0 0.907 0.998

rity problems but the traditional Klein did not. Note also that set-
ting α = 0.10, we could reject the null hypothesis H0 : µR2

x1boot
≥

µR2
gboot

.
Table 7 shows the pairwise p-values of Bnboot×(p+1) from the ap-
plication data. The null hypothesis is that the Cumulative Dis-
tribution Function of the variable in the row does lie below of
the variable in the column. The first column is similar to testing
H0 : µR2

x3boot
≥ µR2

yboot
. It tells us that the predictors that are greater

than the response variable are x2, x5 and x6, which is consistent
with our intuition derived from Figure 2.

Table 7. Pairwise KS p-values of bootstrap samples Bnboot×(p+1) . greater is
used as the alternative hypothesis.

y x1 x2 x3 x4 x5 time
y 1 1 0 1 1 0 0
x1 0 1 0 1 1 0 0
x2 1 1 1 1 1 1 1
x3 0 0 0 1 1 0 0
x4 0 0 0 0 1 0 0
x5 0.991 1 0 1 1 1 0

time 1 1 0 1 1 1 1

Table 7 can also help us decide which variable should be removed
first. For example, in this case x2, time and x5 would be the order
of removing the predictors. This is achieved by checking the rows
of Table 7, this may suggest the ordering of the removal. Respec-
tively, the row sums of x2, time and x5 are 7, 6, and 4.991.
In our application, after removing x2 from the dataset, the p-values
of the Klein’s rule using MTest are 0.002, 0.000, 0.000, 0.314 and
0.845 for x1, x3, x4, x5 and time respectively. Only after removing
x2, time and x5 multicollinearity was removed.
Nonetheless, this removal recommendation is a purely empirical
approach. In this application, we could have divided x2 by x1 sin-
ce this ratio (realgni) is a useful predictor as well, it is the real
GNP. By doing this, and removing predictors x5 and time, multi-
collinearity was also removed. This means that the theory behind
the predictors could play a very important role when dealing with
multicollinearity. The final model after this last consideration is
shown in Table 8.

6. CONCLUSIONS

MTest is a bootstrap application for testing multicollinearity pro-
blems in the predictors. It lets us have a confidence metric, ASL,
that given an α threshold helps us decide whether or not reject
the null hypothesis stated in 3. The whole code generated for this
article can be found at https://github.com/vmoprojs/
ArticleCodes/tree/master/MTest.
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Table 8. Coefficient estimation of the application model after removing variables
causing multicollinearity.

φi in Equation (3) after removing variables
(Intercept) 42716.56∗∗∗

(710.12)
x3 -0.68∗∗

(0.17)
x4 -0.84∗∗

(0.22)
realgni 72.01∗∗∗

(3.33)

R2 0.9893
Adj. R2 0.9864
Num. obs. 15

The application shows consistency with the numerical experi-
ments. Both present MTest as a useful approach to test multico-
llinearity giving a boosting to the traditional rules in the sense that
we can now have distributions of µR2

Xgboot
and µR2

Xjboot

which are

involved in the testing procedure.
A graphical representation of the bootstrap replicates were found
to be very useful. In our application, MTest lets us have boxplots
of the predictors and the dependent variable to guide our intuition
and later perform a KS test.
The pairwise KS matrix of p-values is a complementary tool for
testing multicollinearity derived from MTest. It can also help us
decide which predictor has more potential multicollinearity pro-
blems.
This work can be extended to generalized linear models in the
same manner that Fox and Weisberg (2019) did with the vif fun-
ction contained in car package, but the general idea of MTest
would remain the same. Another extension of MTest could be pos-
sible in the context of Ridge, Lasso or Elastic Net regression. The
hyperparameters in these methods are usually selected through
cross validation or repeated cross validation, and MTest could be
implemented in these procedures.
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Appendix A. Data Generation Code

# ***** Data Generation
library(MASS)
rm(list = ls())
graphics.off()

# Sample size:
n <- 10000
# vector means
medias <- c(0,0,0)
# Correlation structure:
rho_12 <- -.945 # -.94
rho_13 <- .3
rho_23 <- -.5
# Coefficients of the regression:
betas <- c(10,-5,3,9)
s.d <- 3 # deviation of the residual

(Sigma <- matrix(c(1,rho_12,rho_13
,rho_12,1,rho_23,rho_13,rho_23,1),3,3))
set.seed(247)
# Predictors simulation:
X <- mvrnorm(n = n, medias, Sigma)
M <- cbind(1,X)
# Output simulation
y <- M %*% betas + rnorm(n,0,s.d)
datos <- data.frame(y,X)

Appendix B. Code for computing MTest

Mtest <- function(datos, nboot = 500,
nsam = NULL,trace = TRUE,
seed = NULL,
valor_vif = 0.9)

{
if(is.null(nsam)){nsam = nrow(datos)*3}

vals <- 1:nrow(datos)

if(!is.null(seed)) {set.seed(seed)}

sol.rsq <- NULL
sol.vif <- NULL
i = 1
while(i <=nboot)
{
sam <- sample(vals,nsam,replace = TRUE)
aux <- datos[sam,]
maux <- lm(y~.,data = aux)
sm <- summary(maux)
vif.vals <- vif(maux)
Raux <- (vif.vals-1)/vif.vals

s1 <- c(sm$r.squared,Raux)
sol.rsq <- rbind(sol.rsq,s1)
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sol.vif <- rbind(sol.vif,vif.vals)

if(trace)
{
cat("Iteration",i,"out of ",nboot,"\n")

}
i = i+1

}

pval_vif <- NULL
for(j in 2:ncol(sol.rsq))
{

pval_vif <- c(pval_vif,
sum(sol.rsq[,j]>valor_vif)/nboot)

}
names(pval_vif) <-
colnames(sol.rsq)[2:ncol(sol.rsq)]
pval_klein <- NULL
for(z in 2:ncol(sol.rsq))
{

pval_klein <- c(pval_klein,
sum(sol.rsq[,1]<sol.rsq[,z])/nboot)

}
names(pval_klein) <-
colnames(sol.rsq)[2:ncol(sol.rsq)]

colnames(sol.rsq) <- c("global",
paste(names(datos)[-1],sep =""))
rownames(sol.rsq) <- 1:nrow(sol.rsq)
return(list(Bvals= sol.rsq,
pval_vif = pval_vif,pval_klein=pval_klein))

}

Appendix C. Code for the pairwise KS matrix of p-values

pairwise.ks.test <- function(X,
alternative="two.sided")
{

#Returns the p value of the
#pairwise KS test of X columns
n <- ncol(X)
sol <- matrix(NA, ncol = n,
nrow = n)
for(i in 1:(n))
{

for(j in (1):n)
{

# print(c(i,j))
a <- suppressWarnings(
ks.test(X[,i],X[,j],
alternative = alternative))
# print(a$p.value)
sol[i,j] <- a$p.value

}

}
if(alternative=="less")
{print("alternative hypothesis:
the CDF of x lies below that of y.
Rows are ‘x‘ and Columns are ‘y‘")}

if(alternative=="greater")
{print("alternative hypothesis:
the CDF of x lies above that of y.
Rows are ‘x‘ and Columns are ‘y‘")}
if(alternative=="two.sided")
{print("alternative hypothesis:
two-sided")}
colnames(sol) <- colnames(X)
rownames(sol) <- colnames(X)
return(sol)

}

Appendix D. Results of Experiment 3 when p = 3 and p = 5

Table 9. Simulation results for VIF: ÂSLnboot and VIF for p = 3. Different
sample sizes (n) and grades of collinearity (λ ).

VIF: ÂSLnboot VIF
n λ X1 X2 X3 X1 X2 X3
20 0.80 0.00 0.00 0.00 4.8 2.6 4.9

0.82 0.00 0.00 0.00 4.3 2.9 3.9
0.84 0.00 0.00 0.00 4.7 3.2 4.3
0.86 0.01 0.00 0.00 5.3 3.5 4.9
0.88 0.02 0.00 0.01 6.1 4.1 5.7
0.90 0.08 0.00 0.04 7.1 4.8 6.8
0.92 0.27 0.01 0.24 8.7 5.9 8.4
0.94 0.70 0.13 0.71 11.3 7.8 11.1
0.96 0.97 0.79 0.99 16.5 11.6 16.5
0.98 1.00 1.00 1.00 31.8 23.0 32.4

100 0.80 0.00 0.00 0.00 3.1 3.8 6.2
0.82 0.00 0.00 0.00 2.8 2.4 4.1
0.84 0.00 0.00 0.00 3.1 2.6 4.7
0.86 0.00 0.00 0.00 3.5 3.0 5.5
0.88 0.00 0.00 0.00 4.0 3.5 6.5
0.90 0.00 0.00 0.02 4.8 4.2 8.0
0.92 0.00 0.00 0.59 5.9 5.3 10.1
0.94 0.01 0.00 1.00 7.7 7.2 13.8
0.96 0.90 0.78 1.00 11.4 10.9 21.3
0.98 1.00 1.00 1.00 22.5 22.6 43.9

200 0.80 0.00 0.00 0.00 3.7 3.2 6.5
0.82 0.00 0.00 0.00 3.0 2.9 5.3
0.84 0.00 0.00 0.00 3.4 3.2 6.1
0.86 0.00 0.00 0.00 3.8 3.7 7.0
0.88 0.00 0.00 0.00 4.4 4.2 8.3
0.90 0.00 0.00 0.56 5.2 5.0 10.1
0.92 0.00 0.00 1.00 6.4 6.3 12.8
0.94 0.01 0.00 1.00 8.5 8.3 17.3
0.96 1.00 1.00 1.00 12.5 12.4 26.3
0.98 1.00 1.00 1.00 24.8 24.7 53.5
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Table 10. Simulation results for VIF: ÂSLnboot and VIF for p = 5. Different
sample sizes (n) and grades of collinearity (λ ).

VIF: ÂSLnboot VIF
n λ X1 X2 X3 X4 X5 X1 X2 X3 X4 X5
20 0.80 0.01 0.00 0.01 0.00 0.65 6.1 4.4 4.7 3.7 10.4

0.82 0.00 0.00 0.00 0.00 0.17 3.4 3.5 2.6 2.7 7.3
0.84 0.00 0.00 0.00 0.00 0.36 3.7 3.8 2.9 3.0 8.4
0.86 0.00 0.00 0.00 0.00 0.58 4.2 4.3 3.3 3.3 9.8
0.88 0.01 0.00 0.00 0.00 0.82 4.8 4.8 3.8 3.8 11.7
0.90 0.03 0.02 0.00 0.00 0.97 5.7 5.6 4.6 4.4 14.4
0.92 0.09 0.08 0.03 0.00 1.00 7.0 6.8 5.8 5.4 18.4
0.94 0.40 0.40 0.26 0.08 1.00 9.2 8.7 7.8 7.0 25.2
0.96 0.95 0.93 0.86 0.70 1.00 13.6 12.6 12.0 10.2 38.8
0.98 1.00 1.00 1.00 1.00 1.00 26.8 23.9 24.9 19.8 80.0

100 0.80 0.00 0.00 0.00 0.00 0.99 4.0 3.5 3.1 3.8 12.5
0.82 0.00 0.00 0.00 0.00 0.23 2.5 3.0 3.0 2.8 9.1
0.84 0.00 0.00 0.00 0.00 0.67 2.8 3.3 3.4 3.2 10.5
0.86 0.00 0.00 0.00 0.00 0.97 3.1 3.8 3.8 3.6 12.4
0.88 0.00 0.00 0.00 0.00 1.00 3.6 4.4 4.4 4.2 14.9
0.90 0.00 0.00 0.00 0.00 1.00 4.3 5.2 5.3 5.0 18.5
0.92 0.00 0.00 0.00 0.00 1.00 5.4 6.4 6.6 6.3 23.8
0.94 0.00 0.11 0.14 0.08 1.00 7.1 8.4 8.7 8.4 32.9
0.96 0.76 0.95 1.00 0.98 1.00 10.7 12.5 13.1 12.7 51.1
0.98 1.00 1.00 1.00 1.00 1.00 21.6 24.9 26.3 25.6 106.1

200 0.80 0.00 0.00 0.00 0.00 0.61 3.5 3.3 2.8 3.1 10.2
0.82 0.00 0.00 0.00 0.00 0.96 3.6 3.3 3.1 3.4 11.4
0.84 0.00 0.00 0.00 0.00 1.00 4.0 3.7 3.4 3.8 13.1
0.86 0.00 0.00 0.00 0.00 1.00 4.5 4.2 3.9 4.3 15.3
0.88 0.00 0.00 0.00 0.00 1.00 5.2 4.8 4.6 4.9 18.3
0.90 0.00 0.00 0.00 0.00 1.00 6.2 5.8 5.5 5.8 22.5
0.92 0.00 0.00 0.00 0.00 1.00 7.7 7.2 6.8 7.2 28.7
0.94 0.56 0.27 0.13 0.25 1.00 10.1 9.5 9.2 9.4 39.1
0.96 1.00 1.00 1.00 1.00 1.00 14.9 14.3 13.8 13.9 60.0
0.98 1.00 1.00 1.00 1.00 1.00 29.1 28.5 27.9 27.1 122.6
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