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1 
1. INTRODUCTION 

 

In any business organization, business database and storage 

infrastructures contain primarily sensitive data, which are 

targets of a wide range of attacks on their security by users 

seeking to take advantage of that information for different 
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purposes (Malik y Patel, 2016). The most common attacks are 

due to  the wide range of vulnerabilities of  databases. They are 

mainly due to the lack of visibility when they occur at the 

database level and to the scarce analysis of vulnerabilities. An 

example is the inadequate management of user rights and the 
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Abstract: In any business organization, database infrastructures are subject to various structured query language 

(SQL) injection attacks, such as tautologies, alternative coding, stored procedures, use of the union operator, 

piggyback, among others.  This article describes a data mining project developed to mitigate the problem of 

identifying SQL injection attacks on databases.  The project was conducted using an adaptation of the cross-industry 

standard process for data mining (CRISP-DM) methodology. A total of 12 python libraries was used for cleaning, 

transformation, and modeling.  The anomaly detection model was carried out using clustering by the k – nearest 

neighbors (kNN) algorithm.  The query text was analyzed for the groups with anomalies to identify sentences 

presenting attack traces. A web interface was implemented to display the daily summary of the attacks found.  The 

information source was obtained from the transactions log of a PostgreSQL database server.  Our results allowed the 

identification of different attacks by injection of SQL code above 80%. The execution time for processing half a 

million transaction log was approximately 60 minutes using a computer with the following characteristics: Intel® 

Core i7 processor 7th generation, 12GB RAM and 500GB SSD. 
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Uso de Técnicas de Minería de Datos para la Detección de Ataques 

de Inyección de SQL en Sistemas de Bases de Datos  
 

Resumen: En cualquier organización empresarial, las infraestructuras de bases de datos y de almacenamiento de la 

información están sujetas a diversos ataques de inyección de lenguaje de consulta estructurado (SQL), tales como: 

tautologías, codificación alternativa, procedimientos almacenados, uso del operador unión, consultas adicionales, 

entre otros. Este artículo describe un proyecto de minería de datos para desarrollar una herramienta que identifique 

ataques a bases de datos por inyección de código SQL. El proyecto se realizó con una adaptación de la metodología 

de proceso estándar de la industria para la minería de datos (CRISP-DM). En el desarrollo, se usó un total de 12 

librerías de Python para la limpieza, transformación y modelado. El modelo de detección de anomalías fue realizado 

usando agrupación mediante el algoritmo de vecinos más cercanos (kNN), y a los grupos con anomalías se realizó el 

análisis del texto de la consulta para identificar sentencias que indiquen un indicio de ataque. Para la visualización de 

los resultados de los modelos, se implementó una interfaz web, la cual despliega la estadística diaria de los ataques 

encontrados. La fuente de información se obtuvo de registros de transacciones del log de un servidor de base de datos 

PostgreSQL. El resultado obtenido permitió la identificación de diferentes ataques por inyección de código SQL por 

encima del 80% y el tiempo de ejecución para el procesamiento de medio millón de registros fue de aproximadamente 

60 minutos, mediante una computadora con las siguientes características: procesador Intel® Core i7 de séptima 

generación, 12GB de RAM y disco sólido SSD de 500GB.   
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lack of monitoring for unauthorized access (Telefónica 

Company, 2015).  

Modern security vulnerability detection applications must be 

reliable, functional, and easy to manage. In recent years, 

intrusion detection systems (IDS) based on data mining have 

demonstrated high precision, good generalization of new types 

of intrusion and robust behavior in a changing environment 

(Chetan y Ashoka, 2012). In addition, the security incident 

response and intrusion identification engines are gaining 

relevance given the growth of malware and various threats that 

databases are exposed to.   

Research in intrusion detection methods relies on statistical 

models. Lee et al. (2000) analyzed log regular expressions from 

SQL queries to identify the normal behavior of users. Wang 

et.al (2020) proposed an automatic neighbor selection based on 

the kNN (k-Nearest Neighbors) algorithm. Making clear 

emphasis on showing that supervised learning methods have a 

higher efficiency than unsupervised methods and explaining 

the advantages of using a machine learning algorithm, such as 

kNN, for anomalies detection with massive log files.  Brahma 

and Panigrini (2020) analyzed outlier values using data mining 

techniques to automate the intrusion detection process with 

greater precision, using data generated from database users. We 

consider these mentioned studies to be the primary source of 

our project development, we combined a hybrid approach of 

SQL regular expressions analysis for identifying specific types 

of injections and outlier detection to decrease the complexity of 

working with large datasets.     

This paper presents the results of a project to implement a 

model which identifies SQL code injection attacks through the 

analysis of various PostgreSQL transaction logs using the kNN 

data mining technique to detect atypical queries. This solution 

was based on the observation that the transaction record of an 

injection attack has a considerably different duration time than 

a typical transaction and generally other types of SQL 

instructions. The authors also developed a plain-text analysis 

function to identify each type of SQL injection attack. The 

results showed that the algorithm correctly identifies most 

tested SQL injections. 

 
2. BACKGROUND 

 

a.   SQL Code Injection 

 SQL code Injection attack is defined as an attack that is 

carried out on a web application.  The attacker enters SQL 

code in an input box (web form) to obtain illegal access to the 

application (Kumar y Pateriya, 2012). 

 

b.   Types of SQL Code Injection 

 

• Tautologies: In this type of SQL injection, the attacker 

can inject malicious code into the query based on the 

conditional "or 1 = 1" that will always be evaluated as 

true (Al-Sayid y Aldlaeen, 2013). 

• Logically Incorrect Queries: The attacker takes 

advantage of the invalid queries that were run with an 

error message to obtain information about the tables or 

data types (Varshney y Ujjwal, 2019). 

• Inference Boolean injection: The attacker draws his 

logical conclusions from a true-false question thrown 

into the database (Varshney y Ujjwal, 2019).  

• Inference Time-based: It is an inferential SQL injection 

technique that is based on sending an SQL query to the 

database, forcing the database to wait a specific amount 

of time (in seconds) before responding (Varshney y 

Ujjwal, 2019).  

• Union Query: The attacker adds malicious code to a 

second secure query using the "union" operator to obtain 

information from the table of interest in the database 

(Varshney y Ujjwal, 2019). 

• Piggy-Backed Queries: In this type of SQL injection, the 

attacker manipulates the data using the clauses: INSERT, 

UPDATE and DELETE without altering the logic of the 

original query (Al-Sayid y Aldlaeen, 2013). 

• Stored Procedure: The attacker integrates malicious SQL 

injection codes into existing stored procedures in 

databases (Varshney y Ujjwal, 2019). 

• Alternate Encodings: The attacker uses different 

encodings such as hexadecimal, ASCII, or Unicode to 

confuse the SQL statements avoiding basic validation 

(Al-Sayid y Aldlaeen, 2013).  

 

c.   Types of anomaly detection techniques 

 

Table 1 compares the different data mining techniques to 

detect anomalies, their advantages, disadvantages, and the type 

of algorithm each technique follows. 

 

 
Table 1. Comparison of the algorithms to identify anomalies 

Name Algorithm 

Type 

Supervised 

Yes/No 

Advantages Disadvantages 

kNN 

 

Classification 

algorithm 

Yes Simple algorithm to train. 

Make assumptions about the distribution that 

the data follows are unnecessary. 

Slow if you are working with a large amount of 

data. 

Isolation 

Forest 

Based on 

proximity 

No Efficient algorithm for outlier detection, 

especially in high-dimensional datasets. 

Some of these model complexity increases with 

the data dimension and size. 

The training data is not labeled; the model must 

learn without a teacher. 

CBLOF Based on 

proximity 

No It has optimal performance with a small size of 

dimensions. 

Fast execution with large data sets, 

It is not capable of capturing anomalies for a 

high-dimensional data set. 

HBOS Based on 

proximity 

No It performs well on global anomaly detection 

problems. 

It cannot detect local outliers. 

Feature 

Bagging 

Outlier set No When training a data set, you take a sample of 

random characteristics rather than the entirety. 

It should be combined with other methods to 

improve the predictive accuracy of outliers. 
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3. METHODOLOGY 

 

In this study, the CRISP-DM methodology was adapted and 

applied to identify, select, process, and analyze the 

development of our artifact, which is the tool for intrusion 

detection. The steps that were carried out are the following: 

 

a. Problem Understanding: It is crucial to understand the 

objectives and requirements of the study. 

 

b. Data Understanding: Collecting quality data that brings us 

closer to the problem. Data is then scanned and verified, and 

unnecessary data is discarded. 

 

c. Data preparation: Data is prepared, cleaned, and integrated 

into an appropriate format for the data mining technique used 

later. 

 

d. Modeling: This phase focuses on selecting the appropriate 

modeling technique for the data mining project that is being 

developed. 

 

e. Model Evaluation: Evaluate that the steps of the model are 

carried out correctly and measure that each result obtained is 

following the objectives. 

 

f. Visualization: The final phase allows observing the system 

prototype data mining model. 

 

3.1. Problem Understanding 

This study aims to develop a system prototype that allows the 

identification and prediction of events of SQL injection 

attacks on PostgreSQL database servers. 
An extensive bibliographic search was carried out in files, 
documents, books, among other references. 

We needed reliable and accurate information, we consulted 

scientific studies from virtual academic libraries such as 

Research Gate, Google Scholar, among others, to know the 

advances in this field. Also, in this step, the programming 

language we will use is analyzed. Finally, it is verified that it 

has the necessary libraries to process large amounts of data to 

solve the problem. 

The literature reviewed suggested that the authors should focus 

on increasing its accuracy and efficiency at the network or 

operating system level (Hu y Panda, 2004). Other documents 

of interest described approaches of different authors that 

brought us closer to understanding the problem. Lee et al. 

(2000) proposed a database intrusion detection method that 

looked at frequent temporary data access.  

Muslihi y Alghazzawi  (2020) proposed a probabilistic SQL 

injection detection technique through deep learning techniques. 

Brahma y Panigrahi (2020) used fuzzy logic in the intrusion 

detection behavior model in the database to identify intrusion 

on PostgreSQL databases. All of the above research is based on 

statistical methods. But data mining techniques are showing 

their potential in database-based intrusion detection.  

3.2. Data Understanding 

The data of interest in this project are plain text files containing 

sets of transaction logs generated daily by the CSIRT 

(Computer Security Incident Response Center) PostgreSQL 

server. The log transactions generated in PostgreSQL are 

written daily in a formatted file (.log) to be transformed into 

new files (.csv). For this, a VMWare Workstation 16.1 virtual 

machine with Windows 10 Operating System was used, and 

PostgreSQL version 9.5 was installed, which is the database 

management system of interest in this project. The first test data 

we worked on was 62 Megabytes of the transaction log. 

The list below describes each unique value in the PostgreSQL 

configuration file for transactions log that simulates normal 

behavior. 

• % d: Name of the database that is being used to run the 

queries. 

• % u: Name of the user who connected to PostgreSQL 

server. 

• % r: Host and remote port. The client making the 

connection must be on the same machine as the 

PostgreSQL server. 

• % p: ID of the process. Unique identifier assigned to 

each transactions log. 

• % m: Timestamp. It is the timestamp that includes 

milliseconds. 

• % s: Is the transactions log on timestamp. 

• % i: The command label returns the statement, such 

as: SELECT, INSERT, UPDATE, DELETE. 

3.3. Data preparation 

In this stage, the input data is processed so that it can be used 
in the chosen data mining technique, in this case kNN. 

The steps we follow for data processing are detailed below: 

3.3.1. Data Collection 

Table 2 lists all the data selected and created from reading the 
log transaction set. The transaction log is collected in a  text file 
format(.log) that is initially unstructured, so we read the file line 
by line to extract the data from each log using the libraries: 
pandas, CSV and Python as a programming language. 

The files generated from this reading process are a document 
(.csv) with the attributes described in Table 2 and a separate 
text document where the LOG_ID and the RESULT of each set 
of log transactions are stored for later analysis of the type of 
attack in the evaluation stage. 

This step is crucial because  it is unnecessary to use the sort 
technique to have a long string of text, such as the query 
statement for each transaction record. With the new CSV file, 
the PyOD tool allows us to preview the transaction log in the 
Cartesian plane according to the chosen variables without 
needing to make prior changes to the normalization of the 
values to observe them graphically. This phase helps to 
understand the behavior of the transaction log to have a clear 
view of the best variables that can be used to identify 
anomalies. 
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Table 2. Description of each attribute of log 

Attribute 

Name 

Description Domain Type 

LOG_ID Unique identifier 

generated for each 

transactions log 

 

discrete integer 

BDD Name of the 

database on which 

the transactions 

log was generated 

 

categorical string 

USER Name of the user 

who connected to 

PostgreSQL 

categorical string 

IP IP address of each 

computer 

 

integer integer 

DATE Date of the day 

the query was 

made to obtain the 

transactions log. 

 

continuous date 

HOUR Time of the query 

with milliseconds 

 

continuous time 

DATE AND 

HOUR 

Date and time of 

the day on which 

the query was 

made to obtain the 

log. 

 

continuous date 

COMMAND Type of sentence 

executed 

registered in the 

log. 

 

categorical string 

DURATION Duration time in 

seconds that the 

query takes to 

execute. 

 

continuous double 

RESULT Query execution 

result 

categorical string 

 

Figure 1a shows the number of log    transactions generated 

inside the database per hour. Based on this graphic 

representation, we can see that there are certain hours of the day 

when the queries made to the server are less active.  Figure 1b 

shows a different plane in which the type of query performed 

by the log transactions in the database is displayed. It can be 

seen in detail that throughout the day, the most unusual 

commands are UPDATE, GRANT, ALTER, COPY.  

In Figure 2, generated by the pyplot library, we can see a high 

density of transactions log generated in each query to the 

database for each hour of the day. It is necessary to know the 

dimension of the data to be processed and how to use it 

efficiently (Brahma y Panigrahi, 2020), that is why  we present 

the density of queries done within the hours as shown in Figures 

2a, 2b and 2c. These graphs helped to understand what type of 

values are most important in the generated log transactions and 

use them in the mining model, which will appropriately identify 

a behavior different from the normal one (Charania y Vyas, 

2016). 

 

Figure 1. Number of consultations per hour (1a) bar graph and (1b) types 

graph 

3.3.2. Data Cleaning and Normalization 

Certain log transactions  collected with null values on the query 

date and time were eliminated so as not to interfere with the 

identification of anomalies.   

Once the unnecessary columns and null values in the log 

transactions  have been eliminated, taking into account the data 

analysis carried out with the PyOD tool using the kNN 

technique, we decide to generate separate files of 5 000 log 

transactions in each file.  With each file generated in the  

previous steps, we normalize them. This means reshaping their 

data space so that their distribution along the Cartesian plane 

dimensions is approximately the same.  

The traditional normalization method used for kNN is 

minimum-maximum normalization. Minimum-maximum 

normalization subtracts the minimum value of an attribute from 

each attribute value and divides the difference by the attribute 

range.  These new values are multiplied by the new range of the 

attribute to get the time of execution and the time of the day and 

finally added to the new minimum value (Cho, 2002). These 

operations transform the data into a new range [0,1]. As can be 

seen in the formula; 

𝑋𝑛𝑒𝑤 =
𝑋 − 𝑀𝑖𝑛(𝑥)

𝑀𝑎𝑥(𝑋) − 𝑀𝑖𝑛(𝑋)
 

 

Where:  

Xnew: Normalized Value 

(1) 
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Min(x): Minimum value of the characteristic 

Max(x): Maximum value of the characteristic 

 

3.4. Modeling  

Data analysis is the third stage, where the model is applied to 

detect SQL injection attacks. The steps followed are these: 

 

 

  
Figure 2. Log transactions duration and query time in the day (2a) Zoom1, 

(2b) Zoom 2 and (2c) Zoom 3 

3.4.1   Anomalies Identification on Prepared Data 

To identify anomalies (outliers) within a data set we use the 

PyOD library. This process is performed after the log 

transaction set has passed the data transformation and cleansing 

process. For this identification, a comparative evaluation 

between several algorithms was first carried out to understand 

how kNN works and why this algorithm was the best option in 

this project. This comparison is listed in Table 1 and supported 

in the introduction. kNN was used within a plane comparing 

the query duration milliseconds and the query time in day. The 

duration of the executed query is the most critical factor in 

identifying database server injection attacks (Gong et al., 

2019). 

kNN Algorithm 

 

The kNN classifier is based on a distance function that 

measures the difference or similarity between two instances 

(Wang et al., 2020). The standard Euclidean distance "d (x, y)" 

between two instances "x" and "y" is defined by the formula: 

𝑑(𝑥, 𝑦) =  √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 

Where: 

x: i-th highlight of the instance 

y: i-th highlight of the instance and is the total number of 

features in the data set 

It must be considered that the kNN algorithm is a non-

parametric prediction method. This means that it does not 

require the elaboration of a previous model. To make a 

prediction, the kNN algorithm does not compute a predictive 

model from a training data set as in linear or logistic regression. 

Therefore, for kNN, there is no actual learning phase. This is 

why it is generally classified as a lazy learning method (Wang 

et al., 2020).  

Figure 3 shows the implementation of the kNN (k-Nearest 

Neighbor) algorithm used for the atypical queries 

identification. 

 
Figure 3. kNN Model for detection of atypical queries 

 

The result of the aggrupation and anomalies identification is 

shown in Figure 4. The figure shows X and 'Y-axis normalized 

values. The black dots represent the anomalies detected by 

kNN, and the dots inside the red line, or colored white, 

represent the regular transactions log. 

(2) 
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Figure 4. Anomalies Identified with kNN algorithm 

3.4.2. Queries Text Analysis 

The transactions log identified by the implemented algorithm 

as anomalies are stored in a new file.  In this file, we found 

which anomalies are eventually a malicious attack, using text 

analysis on each query string to identify statements that are 

different from regular queries.  

The following list shows the expressions used on the URL of 

the database server to simulate SQL injection attacks. Each 

query was tested with the model to identify the expressions on 

the SQL query.   

• Tautology:  
http://localhost:3434/users.php?name=gabriela and 1=1--+  

• Logically Incorrect Queries: 
http://localhost:3434/users.php?name=gabriela and select * 
from gestion.ges_catalogo where cat_nombre = 

‘belleza’latina’ 

• Union Query: 
http://localhost:3434/users.php?name=gabriela and union 

select prov_ruc, prov_razon_social, 22 from activo. 
proveedor where '1'='1' --+ 

• Piggy-Backed Queries: 
http://localhost:3434/bodegas.php?name=BODEGA1; drop 

table gestion.ges_usuario --+  

• Inference Boolean injection: 
http://localhost:3434/bodegas.php?name=bodega1 and 

declare @s  varchar (8000); select @s = prueba (); if (ascii 
(substring (@s, 1,  1)) &  (power (2, 0))) > 0 waitfor 

delay ‘0:0:5’ 

• Inference Time-based: 
http://localhost:3434/users.php?name=gabriela pg_sleep(15) 

--+ 

• Stored Procedure: 

http://localhost:3434/users.php?name=gabriela and select 
*from gestion.ges_usuario where usr_nombre = '' and 

usr_password = ''; drop table gestion.ges_usuario --+ 

• Alternate Encodings: 
http://localhost:3434/users.php?name=legalUser? 

exec(CHAR(0x73687574646f776e)) -- AND 

usr_password='' --+ 

 

These listed SQL injection attacks have unique text 

expressions, and in this way, the authors were able to identify 

what type of SQL injection it is. 

 

3.5. Model Evaluation 

After establishing a classification model with defined test data, 

the next step is to determine how effective the implemented 

algorithm is in correctly identifying the transactions log that 

leaves traces of an SQL injection. For this, 50 SQL injection 

attacks were simulated on our PostgreSQL-based server. The 

result was obtaining 100 log transactions, 50 having SQL 

injections registered in the queries of each log transaction, and 

50 log transactions with 'normal' behavior without any hint of 

attack. The results were as listed below in Table 3:  

Table 3. Classification model performance results 

Prediction 

Model Results Attack Transactions 

Log 

Normal Transactions 

Log 

 

Positive TP              84% FP             10% 

Negative FN              16% TN             90% 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦:   
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
∗ 100% = 87%  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛:    
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∗ 100% = 89.36% 

𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦:    
𝑇𝑃

𝑇𝑃 + 𝑇𝑁
∗ 100% = 84% 

 

Where: 

TP: True Positive   TN: True Negative 

FN: False Negative  FP: False Positive 

The evaluation values reflected that: 

• Out of 50 known attacks in the log transaction set, 42 were 

identified by our model. While eight were discarded as 

normal behavior. Although the model has desirable 

accuracy, it could leave multiple attacks unidentified in a 

large data set. 

• Percentage results for accuracy, precision, and sensitivity 

are nearly even. So, we can reiterate that the implemented 

model works. 

3.5.1.  Text query analysis evaluation 

This section presents the results of the SQL code injection 

attack tests of the developed model. In Figure 5, we can see a 

summary of the number of attacks carried out by each type of 

injection and the number identified by the system prototype. 

The graph shows that in various injection types, the model 

performance is effective for this project. 

(3) 

(4) 

(5) 
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Figure 5. Comparison between attacks made and detected 

We can see that the percentage of identification of each type 

of injection exceeds 76% of cases except for the type of 

injection of "Illegal Queries", the main reason is that the 

attacks are based on the error response, and there is no specific 

SQL command that can be detected (Chaki y Mat, 2019).  

These percentages agree with the results of the performance 

calculation obtained from the implementation of the kNN 

based classification algorithm shown on the model evaluation. 

Although the obtained training set can achieve a good balance 

in size and precision, there is still some noise data, which will 

affect anomaly detection accuracy to a certain degree. If the 

precision of the automatically selected training set can be 

improved, the accuracy of the anomaly detection model will 

be further improved. 

3.5.2. Load testing 

The following four steps were the evaluated stages of the 
CRISP-DM implementation with the log files.  

1.   Data Collection 

This step collects the data from the entered file, transactions log 
reading, attributes extraction, and generation of new files. 
These files will contain the data of the extracted transactions 
log in a format established for the next step. 

2.   Data Separation  

This step performs a division log, where files are generated 
with a maximum of 5 000 transaction sets each. 

3.   Data transformation and Algorithm Implementation 

Each of the transaction sets generated in the previous step is 
captured, cleaned, and normalized for implementing the kNN 
algorithm. This step results in the generation of new files with 
the transactions identified as anomalies. 

4.   Text Analysis 

A text analysis of the query made to the database associated 
with the log transactions identified as an anomaly is performed. 
In case of registering any expression that reveals the existence 
of an attack or its attempt, the anomaly registry is sent to the 
system server.  

This evaluation consists in measuring the execution time of 
each step explained by loading different sizes of log transaction 
files. The measurement of the execution time of the files was 
carried out by using the 'time' command, which shows the 
following results: 

•    USER (U): The amount of CPU time spent on user-mode 
code (outside the kernel) within the process. This is just 
the actual CPU time used to run the process. 

•    CPU (C): Percentage of CPU that was allocated to the 
command. 

•    TOTAL: Sum of the three attributes indicated at the 

end. The result is shown in seconds. 

The behavior when executing each step with a different 

number of log transactions is shown in Table 4. The data 

collection and separation steps have an almost linear behavior 

for execution time, so it is inferred that the size of log 

transactions used on them does not affect their performance. 

Unlike the two last steps, execution times take much longer 

when the transactions log sets are larger.  

 

The data transformation and kNN Implementation step seems 

to have more complexity and delay time, as shown in the first 

three log files. However, in the rest of files specified in Table 

4 we can see that the text analysis step has an exponential delay 

growth when the set of log transactions is more extensive. 

Although there is an increase in the delay time of the third step, 

where a delay of 21 minutes was obtained with approximately 

half-million log transactions, this is understandable since the 

identification algorithm is implemented there. Unlike the text 

analysis, whose uncontrolled growth is due to the registry 

function that is sent to the server every time an anomaly is 

found. Also, we can see that the step that makes the most use 

of the central processing unit (CPU) is the third step, due to the 

separation of sets of logs and the identification of anomalies 

carried out in this step. The other steps have a uniform and 

normal CPU usage for the tasks they perform.  

 

3.6. Visualization  

Once the model evaluation phase was finished, a web interface 

was created to visualize the model results. Figure 6 shows the 

tools used and the design of the solution architecture we used 

to develop the system prototype. 

 

3.6.1. Architecture 

Our overall solution architecture has the main components: 

a. Data Source 

The PostgreSQL source database data where the transaction 

log files are created. 

b. Data Processing 

All changes made to the original files are made here. 

c. Modeling 

The anomalies detection and text analysis are executed here. 

d. Data Storage 

We make use of a free software provider for web hosting 

applications. 

e. Visualization 

Finally, data is presented in graphs for the final users. 
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Table 4. Classification model performance results 

FILES TIME (s) 

SIZE (mb) 2,6 5,2 10,4 20,7 41,7 83 166 

LOGS 10 000 20 000 40 000 80 000 160 000 320 000 640 000 

VARIABLES U C U C U C U C U C U C U C 

DATA 

COLLECTION 

 

Total 

1 94% 1 82% 2 81% 4 76% 7 89% 16 84% 30 89% 

1,001 1,830 2,915 5,511 9,406 20,968 39,143 

DATA SEPARATION 

 

Total 

1 75% 1 78% 2 65% 2 77% 2 73% 2 83% 3 64% 

2,352 2,326 3,097 2,650 3,247 3,581 7,058 

DATA 

TRANSFORMATION 

AND KNN 

IMPLEMENTATION 

Total 

12 92% 23 96% 48 97% 87 97% 178 98% 365 98% 725 97% 

13,587 29,249 73,516 99,700 92,010 373,910 756,030 

TEXT ANALYSIS  4 33% 10 41% 36 50% 128 65% 465 77% 1784 85% 7164 91% 

Total 
12,460 23,433 59,900 199,430 507,220 2102,290 7870,950 

TOTAL (s) 
29,400 56,838 139,428 307,291 611,883 2500,749 8673,181 

 

3.6.2. Interfaces 

The following interfaces were created for the final 

visualization step: 

a. Login 

A login interface page was created for the web system. It 

contains the primary login fields and a button to retrieve the 

user's password if needed. The interface aimed to establish a 

layer of security for the users using the developed model. 

b.   Daily Summary Tab 

This interface allows you to see daily summary graphs. The 

detected attacks graph displays the anomalies identified as 

attacks. These graphs show the attacks by hours and a division 

of the types of attacks. 

c. Attack and Alert Log Tab 

An interface was also created to show a table where the 

transactions log of all the attacks identified since the 

application start of operation are displayed. In the same way, it 

allows one to visualize in real time the attacks being detected 

and the associated data. 

 

 

 
 

Figure 6. Solution Architecture 

4. SOURCE CODE AVAILABILITY 

 

Access to datasets and source code for reproduction are 

available from the corresponding author upon request. 

  

5. DISCUSSION 

 

Data preparation phase was executed with considerable work 

on data cleaning; we removed a significant amount of 

duplicate log transaction records because of empty columns, 

special characters, useless data, among others. As a result, a 

new set of data ready to be processed was obtained. 

 

The kNN model developed was the most appropriate approach 

for our planned solution. When evaluating this model, we 

obtained an accuracy of 89.36%, which is reflected in equation 

4 and it is a good indicator that the model meets its objective 

of detecting SQL injections. 

 

It is important to mention that most of the data mining 

algorithms are less efficient when their data set increases, and 
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so was the case in this project, it is recommended to use Big 

Data tools for a future approach on this scope. 

 

6. CONCLUSIONS AND FUTURE WORK 

 

In this study, we use the kNN classification algorithm because 
it is a simple algorithm that classifies the new data based on a 
measure of similarity. Additionally, it does not make 
assumptions about the distribution followed by the data and 
tells us that the closer a piece of data is to the data set has a 
normal behavior, the further away it is considered an anomaly. 

The functionality tests in the evaluation stage reflected that the 

algorithm implemented in the system is practical and has the 

option to be implemented not only in PostgreSQL databases but 

also in others that can generate similar data used in this project. 

From the project carried out, it is proposed to analyze the 

integration of the algorithm implemented for the identification 

of anomalies with a neural network since it has been shown in 

several current studies that a more robust and accurate intruder 

identifier can be obtained through the use of a constant learning 

network.  

The kNN (k-Nearest Neighbor) algorithm correctly performed 

its objective and was detected SQL injection attacks when 

working with sets of 5 000 log transactions. Being a supervised 

learning algorithm, its implementation was straightforward, 

and its results were reflected by correctly classifying normal 

from abnormal behavior. 

Big Data concepts can be added to improve the execution time 
of the application, one example is the use of parallelism with 
Hadoop Distributed File System (HDFS). This framework can 
reliably store process large amounts of data using simple 
programming models on a cluster. Furthermore, by distributing 
storage and computing across many servers, the resource can 
grow with demand while remaining inexpensive across all sizes 
(Shvachko et al., 2010).  

It is recommended to investigate depth methods of identifying 

other types of attacks such as excess of privileges, denial of 

services (DoS), sensitive data without handling. There is a wide 

range of internal and external attacks, to which database servers 

can be vulnerable, different from those identified in this project. 
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