
Using Data Mining Techniques for the Detection of SQL Injection Attacks on Database Systems 19

Revista Politécnica, Mayo - Julio 2023, Vol. 51, No. 2

1
1. INTRODUCTION

In any business organization, business database and storage

infrastructures contain primarily sensitive data, which are

targets of a wide range of attacks on their security by users

seeking to take advantage of that information for different

*cesar.anasco@epn.edu.ec

Recibido: 03/12/2021

Aceptado: 30/09/2022

Publicado en línea: 01/05/2023

10.33333/rp.vol51n2.02

CC 4.0

purposes (Malik y Patel, 2016). The most common attacks are

due to the wide range of vulnerabilities of databases. They are

mainly due to the lack of visibility when they occur at the

database level and to the scarce analysis of vulnerabilities. An

example is the inadequate management of user rights and the

Using Data Mining Techniques for the Detection of SQL Injection

Attacks on Database Systems

Añasco, Cesar 1 ; Morocho, Karen1 ; Hallo, María1

1Escuela Politécnica Nacional, Facultad de Ingeniería en Sistemas, Quito, Ecuador

Abstract: In any business organization, database infrastructures are subject to various structured query language

(SQL) injection attacks, such as tautologies, alternative coding, stored procedures, use of the union operator,

piggyback, among others. This article describes a data mining project developed to mitigate the problem of

identifying SQL injection attacks on databases. The project was conducted using an adaptation of the cross-industry

standard process for data mining (CRISP-DM) methodology. A total of 12 python libraries was used for cleaning,

transformation, and modeling. The anomaly detection model was carried out using clustering by the k – nearest

neighbors (kNN) algorithm. The query text was analyzed for the groups with anomalies to identify sentences

presenting attack traces. A web interface was implemented to display the daily summary of the attacks found. The

information source was obtained from the transactions log of a PostgreSQL database server. Our results allowed the

identification of different attacks by injection of SQL code above 80%. The execution time for processing half a

million transaction log was approximately 60 minutes using a computer with the following characteristics: Intel®

Core i7 processor 7th generation, 12GB RAM and 500GB SSD.

Keywords: Log, Database Attacks, Anomalies, Queries, CRISP-DM, IDS (Intrusion Detection Systems)

Uso de Técnicas de Minería de Datos para la Detección de Ataques

de Inyección de SQL en Sistemas de Bases de Datos

Resumen: En cualquier organización empresarial, las infraestructuras de bases de datos y de almacenamiento de la

información están sujetas a diversos ataques de inyección de lenguaje de consulta estructurado (SQL), tales como:

tautologías, codificación alternativa, procedimientos almacenados, uso del operador unión, consultas adicionales,

entre otros. Este artículo describe un proyecto de minería de datos para desarrollar una herramienta que identifique

ataques a bases de datos por inyección de código SQL. El proyecto se realizó con una adaptación de la metodología

de proceso estándar de la industria para la minería de datos (CRISP-DM). En el desarrollo, se usó un total de 12

librerías de Python para la limpieza, transformación y modelado. El modelo de detección de anomalías fue realizado

usando agrupación mediante el algoritmo de vecinos más cercanos (kNN), y a los grupos con anomalías se realizó el

análisis del texto de la consulta para identificar sentencias que indiquen un indicio de ataque. Para la visualización de

los resultados de los modelos, se implementó una interfaz web, la cual despliega la estadística diaria de los ataques

encontrados. La fuente de información se obtuvo de registros de transacciones del log de un servidor de base de datos

PostgreSQL. El resultado obtenido permitió la identificación de diferentes ataques por inyección de código SQL por

encima del 80% y el tiempo de ejecución para el procesamiento de medio millón de registros fue de aproximadamente

60 minutos, mediante una computadora con las siguientes características: procesador Intel® Core i7 de séptima

generación, 12GB de RAM y disco sólido SSD de 500GB.

Palabras clave: Log, Ataques a Bases de Datos, Anomalías, Consultas SQL, CRISP-DM, IDS (Sistema de Detección

de Intrusos)

https://doi.org/10.33333/rp.vol51n2.02
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://orcid.org/0000-0002-0156-3281
https://orcid.org/0000-0003-2042-5711
https://orcid.org/0000-0002-6718-0603

Cesar Añasco; Karen Morocho; María Hallo 20

Revista Politécnica, Mayo - Julio 2023, Vol. 51, No. 2

lack of monitoring for unauthorized access (Telefónica

Company, 2015).

Modern security vulnerability detection applications must be

reliable, functional, and easy to manage. In recent years,

intrusion detection systems (IDS) based on data mining have

demonstrated high precision, good generalization of new types

of intrusion and robust behavior in a changing environment

(Chetan y Ashoka, 2012). In addition, the security incident

response and intrusion identification engines are gaining

relevance given the growth of malware and various threats that

databases are exposed to.

Research in intrusion detection methods relies on statistical

models. Lee et al. (2000) analyzed log regular expressions from

SQL queries to identify the normal behavior of users. Wang

et.al (2020) proposed an automatic neighbor selection based on

the kNN (k-Nearest Neighbors) algorithm. Making clear

emphasis on showing that supervised learning methods have a

higher efficiency than unsupervised methods and explaining

the advantages of using a machine learning algorithm, such as

kNN, for anomalies detection with massive log files. Brahma

and Panigrini (2020) analyzed outlier values using data mining

techniques to automate the intrusion detection process with

greater precision, using data generated from database users. We

consider these mentioned studies to be the primary source of

our project development, we combined a hybrid approach of

SQL regular expressions analysis for identifying specific types

of injections and outlier detection to decrease the complexity of

working with large datasets.

This paper presents the results of a project to implement a

model which identifies SQL code injection attacks through the

analysis of various PostgreSQL transaction logs using the kNN

data mining technique to detect atypical queries. This solution

was based on the observation that the transaction record of an

injection attack has a considerably different duration time than

a typical transaction and generally other types of SQL

instructions. The authors also developed a plain-text analysis

function to identify each type of SQL injection attack. The

results showed that the algorithm correctly identifies most

tested SQL injections.

2. BACKGROUND

a. SQL Code Injection

 SQL code Injection attack is defined as an attack that is

carried out on a web application. The attacker enters SQL

code in an input box (web form) to obtain illegal access to the

application (Kumar y Pateriya, 2012).

b. Types of SQL Code Injection

• Tautologies: In this type of SQL injection, the attacker

can inject malicious code into the query based on the

conditional "or 1 = 1" that will always be evaluated as

true (Al-Sayid y Aldlaeen, 2013).

• Logically Incorrect Queries: The attacker takes

advantage of the invalid queries that were run with an

error message to obtain information about the tables or

data types (Varshney y Ujjwal, 2019).

• Inference Boolean injection: The attacker draws his

logical conclusions from a true-false question thrown

into the database (Varshney y Ujjwal, 2019).

• Inference Time-based: It is an inferential SQL injection

technique that is based on sending an SQL query to the

database, forcing the database to wait a specific amount

of time (in seconds) before responding (Varshney y

Ujjwal, 2019).

• Union Query: The attacker adds malicious code to a

second secure query using the "union" operator to obtain

information from the table of interest in the database

(Varshney y Ujjwal, 2019).

• Piggy-Backed Queries: In this type of SQL injection, the

attacker manipulates the data using the clauses: INSERT,

UPDATE and DELETE without altering the logic of the

original query (Al-Sayid y Aldlaeen, 2013).

• Stored Procedure: The attacker integrates malicious SQL

injection codes into existing stored procedures in

databases (Varshney y Ujjwal, 2019).

• Alternate Encodings: The attacker uses different

encodings such as hexadecimal, ASCII, or Unicode to

confuse the SQL statements avoiding basic validation

(Al-Sayid y Aldlaeen, 2013).

c. Types of anomaly detection techniques

Table 1 compares the different data mining techniques to

detect anomalies, their advantages, disadvantages, and the type

of algorithm each technique follows.

Table 1. Comparison of the algorithms to identify anomalies

Name Algorithm

Type

Supervised

Yes/No

Advantages Disadvantages

kNN

Classification

algorithm

Yes Simple algorithm to train.

Make assumptions about the distribution that

the data follows are unnecessary.

Slow if you are working with a large amount of

data.

Isolation

Forest

Based on

proximity

No Efficient algorithm for outlier detection,

especially in high-dimensional datasets.

Some of these model complexity increases with

the data dimension and size.

The training data is not labeled; the model must

learn without a teacher.

CBLOF Based on

proximity

No It has optimal performance with a small size of

dimensions.

Fast execution with large data sets,

It is not capable of capturing anomalies for a

high-dimensional data set.

HBOS Based on

proximity

No It performs well on global anomaly detection

problems.

It cannot detect local outliers.

Feature

Bagging

Outlier set No When training a data set, you take a sample of

random characteristics rather than the entirety.

It should be combined with other methods to

improve the predictive accuracy of outliers.

Using Data Mining Techniques for the Detection of SQL Injection Attacks on Database Systems 21

Revista Politécnica, Mayo - Julio 2023, Vol. 51, No. 2

3. METHODOLOGY

In this study, the CRISP-DM methodology was adapted and

applied to identify, select, process, and analyze the

development of our artifact, which is the tool for intrusion

detection. The steps that were carried out are the following:

a. Problem Understanding: It is crucial to understand the

objectives and requirements of the study.

b. Data Understanding: Collecting quality data that brings us

closer to the problem. Data is then scanned and verified, and

unnecessary data is discarded.

c. Data preparation: Data is prepared, cleaned, and integrated

into an appropriate format for the data mining technique used

later.

d. Modeling: This phase focuses on selecting the appropriate

modeling technique for the data mining project that is being

developed.

e. Model Evaluation: Evaluate that the steps of the model are

carried out correctly and measure that each result obtained is

following the objectives.

f. Visualization: The final phase allows observing the system

prototype data mining model.

3.1. Problem Understanding

This study aims to develop a system prototype that allows the

identification and prediction of events of SQL injection

attacks on PostgreSQL database servers.
An extensive bibliographic search was carried out in files,
documents, books, among other references.

We needed reliable and accurate information, we consulted

scientific studies from virtual academic libraries such as

Research Gate, Google Scholar, among others, to know the

advances in this field. Also, in this step, the programming

language we will use is analyzed. Finally, it is verified that it

has the necessary libraries to process large amounts of data to

solve the problem.

The literature reviewed suggested that the authors should focus

on increasing its accuracy and efficiency at the network or

operating system level (Hu y Panda, 2004). Other documents

of interest described approaches of different authors that

brought us closer to understanding the problem. Lee et al.

(2000) proposed a database intrusion detection method that

looked at frequent temporary data access.

Muslihi y Alghazzawi (2020) proposed a probabilistic SQL

injection detection technique through deep learning techniques.

Brahma y Panigrahi (2020) used fuzzy logic in the intrusion

detection behavior model in the database to identify intrusion

on PostgreSQL databases. All of the above research is based on

statistical methods. But data mining techniques are showing

their potential in database-based intrusion detection.

3.2. Data Understanding

The data of interest in this project are plain text files containing

sets of transaction logs generated daily by the CSIRT

(Computer Security Incident Response Center) PostgreSQL

server. The log transactions generated in PostgreSQL are

written daily in a formatted file (.log) to be transformed into

new files (.csv). For this, a VMWare Workstation 16.1 virtual

machine with Windows 10 Operating System was used, and

PostgreSQL version 9.5 was installed, which is the database

management system of interest in this project. The first test data

we worked on was 62 Megabytes of the transaction log.

The list below describes each unique value in the PostgreSQL

configuration file for transactions log that simulates normal

behavior.

• % d: Name of the database that is being used to run the

queries.

• % u: Name of the user who connected to PostgreSQL

server.

• % r: Host and remote port. The client making the

connection must be on the same machine as the

PostgreSQL server.

• % p: ID of the process. Unique identifier assigned to

each transactions log.

• % m: Timestamp. It is the timestamp that includes

milliseconds.

• % s: Is the transactions log on timestamp.

• % i: The command label returns the statement, such

as: SELECT, INSERT, UPDATE, DELETE.

3.3. Data preparation

In this stage, the input data is processed so that it can be used
in the chosen data mining technique, in this case kNN.

The steps we follow for data processing are detailed below:

3.3.1. Data Collection

Table 2 lists all the data selected and created from reading the
log transaction set. The transaction log is collected in a text file
format(.log) that is initially unstructured, so we read the file line
by line to extract the data from each log using the libraries:
pandas, CSV and Python as a programming language.

The files generated from this reading process are a document
(.csv) with the attributes described in Table 2 and a separate
text document where the LOG_ID and the RESULT of each set
of log transactions are stored for later analysis of the type of
attack in the evaluation stage.

This step is crucial because it is unnecessary to use the sort
technique to have a long string of text, such as the query
statement for each transaction record. With the new CSV file,
the PyOD tool allows us to preview the transaction log in the
Cartesian plane according to the chosen variables without
needing to make prior changes to the normalization of the
values to observe them graphically. This phase helps to
understand the behavior of the transaction log to have a clear
view of the best variables that can be used to identify
anomalies.

Cesar Añasco; Karen Morocho; María Hallo 22

Revista Politécnica, Mayo - Julio 2023, Vol. 51, No. 2

Table 2. Description of each attribute of log

Attribute

Name

Description Domain Type

LOG_ID Unique identifier

generated for each

transactions log

discrete integer

BDD Name of the

database on which

the transactions

log was generated

categorical string

USER Name of the user

who connected to

PostgreSQL

categorical string

IP IP address of each

computer

integer integer

DATE Date of the day

the query was

made to obtain the

transactions log.

continuous date

HOUR Time of the query

with milliseconds

continuous time

DATE AND

HOUR

Date and time of

the day on which

the query was

made to obtain the

log.

continuous date

COMMAND Type of sentence

executed

registered in the

log.

categorical string

DURATION Duration time in

seconds that the

query takes to

execute.

continuous double

RESULT Query execution

result

categorical string

Figure 1a shows the number of log transactions generated

inside the database per hour. Based on this graphic

representation, we can see that there are certain hours of the day

when the queries made to the server are less active. Figure 1b

shows a different plane in which the type of query performed

by the log transactions in the database is displayed. It can be

seen in detail that throughout the day, the most unusual

commands are UPDATE, GRANT, ALTER, COPY.

In Figure 2, generated by the pyplot library, we can see a high

density of transactions log generated in each query to the

database for each hour of the day. It is necessary to know the

dimension of the data to be processed and how to use it

efficiently (Brahma y Panigrahi, 2020), that is why we present

the density of queries done within the hours as shown in Figures

2a, 2b and 2c. These graphs helped to understand what type of

values are most important in the generated log transactions and

use them in the mining model, which will appropriately identify

a behavior different from the normal one (Charania y Vyas,

2016).

Figure 1. Number of consultations per hour (1a) bar graph and (1b) types

graph

3.3.2. Data Cleaning and Normalization

Certain log transactions collected with null values on the query

date and time were eliminated so as not to interfere with the

identification of anomalies.

Once the unnecessary columns and null values in the log

transactions have been eliminated, taking into account the data

analysis carried out with the PyOD tool using the kNN

technique, we decide to generate separate files of 5 000 log

transactions in each file. With each file generated in the

previous steps, we normalize them. This means reshaping their

data space so that their distribution along the Cartesian plane

dimensions is approximately the same.

The traditional normalization method used for kNN is

minimum-maximum normalization. Minimum-maximum

normalization subtracts the minimum value of an attribute from

each attribute value and divides the difference by the attribute

range. These new values are multiplied by the new range of the

attribute to get the time of execution and the time of the day and

finally added to the new minimum value (Cho, 2002). These

operations transform the data into a new range [0,1]. As can be

seen in the formula;

𝑋𝑛𝑒𝑤 =
𝑋 − 𝑀𝑖𝑛(𝑥)

𝑀𝑎𝑥(𝑋) − 𝑀𝑖𝑛(𝑋)

Where:

Xnew: Normalized Value

(1)

Using Data Mining Techniques for the Detection of SQL Injection Attacks on Database Systems 23

Revista Politécnica, Mayo - Julio 2023, Vol. 51, No. 2

Min(x): Minimum value of the characteristic

Max(x): Maximum value of the characteristic

3.4. Modeling

Data analysis is the third stage, where the model is applied to

detect SQL injection attacks. The steps followed are these:

Figure 2. Log transactions duration and query time in the day (2a) Zoom1,

(2b) Zoom 2 and (2c) Zoom 3

3.4.1 Anomalies Identification on Prepared Data

To identify anomalies (outliers) within a data set we use the

PyOD library. This process is performed after the log

transaction set has passed the data transformation and cleansing

process. For this identification, a comparative evaluation

between several algorithms was first carried out to understand

how kNN works and why this algorithm was the best option in

this project. This comparison is listed in Table 1 and supported

in the introduction. kNN was used within a plane comparing

the query duration milliseconds and the query time in day. The

duration of the executed query is the most critical factor in

identifying database server injection attacks (Gong et al.,

2019).

kNN Algorithm

The kNN classifier is based on a distance function that

measures the difference or similarity between two instances

(Wang et al., 2020). The standard Euclidean distance "d (x, y)"

between two instances "x" and "y" is defined by the formula:

𝑑(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

Where:

x: i-th highlight of the instance

y: i-th highlight of the instance and is the total number of

features in the data set

It must be considered that the kNN algorithm is a non-

parametric prediction method. This means that it does not

require the elaboration of a previous model. To make a

prediction, the kNN algorithm does not compute a predictive

model from a training data set as in linear or logistic regression.

Therefore, for kNN, there is no actual learning phase. This is

why it is generally classified as a lazy learning method (Wang

et al., 2020).

Figure 3 shows the implementation of the kNN (k-Nearest

Neighbor) algorithm used for the atypical queries

identification.

Figure 3. kNN Model for detection of atypical queries

The result of the aggrupation and anomalies identification is

shown in Figure 4. The figure shows X and 'Y-axis normalized

values. The black dots represent the anomalies detected by

kNN, and the dots inside the red line, or colored white,

represent the regular transactions log.

(2)

Cesar Añasco; Karen Morocho; María Hallo 24

Revista Politécnica, Mayo - Julio 2023, Vol. 51, No. 2

Figure 4. Anomalies Identified with kNN algorithm

3.4.2. Queries Text Analysis

The transactions log identified by the implemented algorithm

as anomalies are stored in a new file. In this file, we found

which anomalies are eventually a malicious attack, using text

analysis on each query string to identify statements that are

different from regular queries.

The following list shows the expressions used on the URL of

the database server to simulate SQL injection attacks. Each

query was tested with the model to identify the expressions on

the SQL query.

• Tautology:
http://localhost:3434/users.php?name=gabriela and 1=1--+

• Logically Incorrect Queries:
http://localhost:3434/users.php?name=gabriela and select *
from gestion.ges_catalogo where cat_nombre =

‘belleza’latina’

• Union Query:
http://localhost:3434/users.php?name=gabriela and union

select prov_ruc, prov_razon_social, 22 from activo.
proveedor where '1'='1' --+

• Piggy-Backed Queries:
http://localhost:3434/bodegas.php?name=BODEGA1; drop

table gestion.ges_usuario --+

• Inference Boolean injection:
http://localhost:3434/bodegas.php?name=bodega1 and

declare @s varchar (8000); select @s = prueba (); if (ascii
(substring (@s, 1, 1)) & (power (2, 0))) > 0 waitfor

delay ‘0:0:5’

• Inference Time-based:
http://localhost:3434/users.php?name=gabriela pg_sleep(15)

--+

• Stored Procedure:

http://localhost:3434/users.php?name=gabriela and select
*from gestion.ges_usuario where usr_nombre = '' and

usr_password = ''; drop table gestion.ges_usuario --+

• Alternate Encodings:
http://localhost:3434/users.php?name=legalUser?

exec(CHAR(0x73687574646f776e)) -- AND

usr_password='' --+

These listed SQL injection attacks have unique text

expressions, and in this way, the authors were able to identify

what type of SQL injection it is.

3.5. Model Evaluation

After establishing a classification model with defined test data,

the next step is to determine how effective the implemented

algorithm is in correctly identifying the transactions log that

leaves traces of an SQL injection. For this, 50 SQL injection

attacks were simulated on our PostgreSQL-based server. The

result was obtaining 100 log transactions, 50 having SQL

injections registered in the queries of each log transaction, and

50 log transactions with 'normal' behavior without any hint of

attack. The results were as listed below in Table 3:

Table 3. Classification model performance results

Prediction

Model Results Attack Transactions

Log

Normal Transactions

Log

Positive TP 84% FP 10%

Negative FN 16% TN 90%

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦:
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
∗ 100% = 87%

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛:
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∗ 100% = 89.36%

𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦:
𝑇𝑃

𝑇𝑃 + 𝑇𝑁
∗ 100% = 84%

Where:

TP: True Positive TN: True Negative

FN: False Negative FP: False Positive

The evaluation values reflected that:

• Out of 50 known attacks in the log transaction set, 42 were

identified by our model. While eight were discarded as

normal behavior. Although the model has desirable

accuracy, it could leave multiple attacks unidentified in a

large data set.

• Percentage results for accuracy, precision, and sensitivity

are nearly even. So, we can reiterate that the implemented

model works.

3.5.1. Text query analysis evaluation

This section presents the results of the SQL code injection

attack tests of the developed model. In Figure 5, we can see a

summary of the number of attacks carried out by each type of

injection and the number identified by the system prototype.

The graph shows that in various injection types, the model

performance is effective for this project.

(3)

(4)

(5)

Using Data Mining Techniques for the Detection of SQL Injection Attacks on Database Systems 25

Revista Politécnica, Mayo - Julio 2023, Vol. 51, No. 2

Figure 5. Comparison between attacks made and detected

We can see that the percentage of identification of each type

of injection exceeds 76% of cases except for the type of

injection of "Illegal Queries", the main reason is that the

attacks are based on the error response, and there is no specific

SQL command that can be detected (Chaki y Mat, 2019).

These percentages agree with the results of the performance

calculation obtained from the implementation of the kNN

based classification algorithm shown on the model evaluation.

Although the obtained training set can achieve a good balance

in size and precision, there is still some noise data, which will

affect anomaly detection accuracy to a certain degree. If the

precision of the automatically selected training set can be

improved, the accuracy of the anomaly detection model will

be further improved.

3.5.2. Load testing

The following four steps were the evaluated stages of the
CRISP-DM implementation with the log files.

1. Data Collection

This step collects the data from the entered file, transactions log
reading, attributes extraction, and generation of new files.
These files will contain the data of the extracted transactions
log in a format established for the next step.

2. Data Separation

This step performs a division log, where files are generated
with a maximum of 5 000 transaction sets each.

3. Data transformation and Algorithm Implementation

Each of the transaction sets generated in the previous step is
captured, cleaned, and normalized for implementing the kNN
algorithm. This step results in the generation of new files with
the transactions identified as anomalies.

4. Text Analysis

A text analysis of the query made to the database associated
with the log transactions identified as an anomaly is performed.
In case of registering any expression that reveals the existence
of an attack or its attempt, the anomaly registry is sent to the
system server.

This evaluation consists in measuring the execution time of
each step explained by loading different sizes of log transaction
files. The measurement of the execution time of the files was
carried out by using the 'time' command, which shows the
following results:

• USER (U): The amount of CPU time spent on user-mode
code (outside the kernel) within the process. This is just
the actual CPU time used to run the process.

• CPU (C): Percentage of CPU that was allocated to the
command.

• TOTAL: Sum of the three attributes indicated at the

end. The result is shown in seconds.

The behavior when executing each step with a different

number of log transactions is shown in Table 4. The data

collection and separation steps have an almost linear behavior

for execution time, so it is inferred that the size of log

transactions used on them does not affect their performance.

Unlike the two last steps, execution times take much longer

when the transactions log sets are larger.

The data transformation and kNN Implementation step seems

to have more complexity and delay time, as shown in the first

three log files. However, in the rest of files specified in Table

4 we can see that the text analysis step has an exponential delay

growth when the set of log transactions is more extensive.

Although there is an increase in the delay time of the third step,

where a delay of 21 minutes was obtained with approximately

half-million log transactions, this is understandable since the

identification algorithm is implemented there. Unlike the text

analysis, whose uncontrolled growth is due to the registry

function that is sent to the server every time an anomaly is

found. Also, we can see that the step that makes the most use

of the central processing unit (CPU) is the third step, due to the

separation of sets of logs and the identification of anomalies

carried out in this step. The other steps have a uniform and

normal CPU usage for the tasks they perform.

3.6. Visualization

Once the model evaluation phase was finished, a web interface

was created to visualize the model results. Figure 6 shows the

tools used and the design of the solution architecture we used

to develop the system prototype.

3.6.1. Architecture

Our overall solution architecture has the main components:

a. Data Source

The PostgreSQL source database data where the transaction

log files are created.

b. Data Processing

All changes made to the original files are made here.

c. Modeling

The anomalies detection and text analysis are executed here.

d. Data Storage

We make use of a free software provider for web hosting

applications.

e. Visualization

Finally, data is presented in graphs for the final users.

Cesar Añasco; Karen Morocho; María Hallo 26

Revista Politécnica, Mayo - Julio 2023, Vol. 51, No. 2

Table 4. Classification model performance results

FILES TIME (s)

SIZE (mb) 2,6 5,2 10,4 20,7 41,7 83 166

LOGS 10 000 20 000 40 000 80 000 160 000 320 000 640 000

VARIABLES U C U C U C U C U C U C U C

DATA

COLLECTION

Total

1 94% 1 82% 2 81% 4 76% 7 89% 16 84% 30 89%

1,001 1,830 2,915 5,511 9,406 20,968 39,143

DATA SEPARATION

Total

1 75% 1 78% 2 65% 2 77% 2 73% 2 83% 3 64%

2,352 2,326 3,097 2,650 3,247 3,581 7,058

DATA

TRANSFORMATION

AND KNN

IMPLEMENTATION

Total

12 92% 23 96% 48 97% 87 97% 178 98% 365 98% 725 97%

13,587 29,249 73,516 99,700 92,010 373,910 756,030

TEXT ANALYSIS 4 33% 10 41% 36 50% 128 65% 465 77% 1784 85% 7164 91%

Total
12,460 23,433 59,900 199,430 507,220 2102,290 7870,950

TOTAL (s)
29,400 56,838 139,428 307,291 611,883 2500,749 8673,181

3.6.2. Interfaces

The following interfaces were created for the final

visualization step:

a. Login

A login interface page was created for the web system. It

contains the primary login fields and a button to retrieve the

user's password if needed. The interface aimed to establish a

layer of security for the users using the developed model.

b. Daily Summary Tab

This interface allows you to see daily summary graphs. The

detected attacks graph displays the anomalies identified as

attacks. These graphs show the attacks by hours and a division

of the types of attacks.

c. Attack and Alert Log Tab

An interface was also created to show a table where the

transactions log of all the attacks identified since the

application start of operation are displayed. In the same way, it

allows one to visualize in real time the attacks being detected

and the associated data.

Figure 6. Solution Architecture

4. SOURCE CODE AVAILABILITY

Access to datasets and source code for reproduction are

available from the corresponding author upon request.

5. DISCUSSION

Data preparation phase was executed with considerable work

on data cleaning; we removed a significant amount of

duplicate log transaction records because of empty columns,

special characters, useless data, among others. As a result, a

new set of data ready to be processed was obtained.

The kNN model developed was the most appropriate approach

for our planned solution. When evaluating this model, we

obtained an accuracy of 89.36%, which is reflected in equation

4 and it is a good indicator that the model meets its objective

of detecting SQL injections.

It is important to mention that most of the data mining

algorithms are less efficient when their data set increases, and

Using Data Mining Techniques for the Detection of SQL Injection Attacks on Database Systems 27

Revista Politécnica, Mayo - Julio 2023, Vol. 51, No. 2

so was the case in this project, it is recommended to use Big

Data tools for a future approach on this scope.

6. CONCLUSIONS AND FUTURE WORK

In this study, we use the kNN classification algorithm because
it is a simple algorithm that classifies the new data based on a
measure of similarity. Additionally, it does not make
assumptions about the distribution followed by the data and
tells us that the closer a piece of data is to the data set has a
normal behavior, the further away it is considered an anomaly.

The functionality tests in the evaluation stage reflected that the

algorithm implemented in the system is practical and has the

option to be implemented not only in PostgreSQL databases but

also in others that can generate similar data used in this project.

From the project carried out, it is proposed to analyze the

integration of the algorithm implemented for the identification

of anomalies with a neural network since it has been shown in

several current studies that a more robust and accurate intruder

identifier can be obtained through the use of a constant learning

network.

The kNN (k-Nearest Neighbor) algorithm correctly performed

its objective and was detected SQL injection attacks when

working with sets of 5 000 log transactions. Being a supervised

learning algorithm, its implementation was straightforward,

and its results were reflected by correctly classifying normal

from abnormal behavior.

Big Data concepts can be added to improve the execution time
of the application, one example is the use of parallelism with
Hadoop Distributed File System (HDFS). This framework can
reliably store process large amounts of data using simple
programming models on a cluster. Furthermore, by distributing
storage and computing across many servers, the resource can
grow with demand while remaining inexpensive across all sizes
(Shvachko et al., 2010).

It is recommended to investigate depth methods of identifying

other types of attacks such as excess of privileges, denial of

services (DoS), sensitive data without handling. There is a wide

range of internal and external attacks, to which database servers

can be vulnerable, different from those identified in this project.

REFERENCES

 Al-Sayid, N. A., & Aldlaeen, D. (2013, March). Database security

threats: A survey study. In 2013 5th International Conference
on Computer Science and Information Technology (pp. 60-

64). IEEE.

https://pdf.zlibcdn.com/dtoken/a8e5836392db05a43b7d71fd5

2c2ffdd/CSIT.2013.6588759.pdf
Brahma, A., & Panigrahi, S. (2020). Role of soft outlier analysis in

database intrusion detection. In Advanced Computing and

Intelligent Engineering (pp. 479-489). Springer.

Chaki, S. M. H., & Din, M. M. (2019). A Survey on SQL Injection
Prevention Methods. International Journal of Innovative

Computing, 9(1).

https://ijic.utm.my/index.php/ijic/article/view/224/143
Charania, S., & Vyas, V. (2016). SQL Injection Attack: Detection and

Prevention. Int. Res. J. Eng. Technol, 2395-56.

https://docplayer.net/49705074-Sql-injection-attack-

detection-and-prevention.html
Chetan, R., & Ashoka, D. V. (2012, January). Data mining based

network intrusion detection system: A database centric
approach. In 2012 International Conference on Computer

Communication and Informatics (pp. 1-6). IEEE.

https://pdf.zlibcdn.com/dtoken/97d1ad3853bc5d09653697d9

eab6958f/iccci.2012.6158816.pdf
Cho, S. B. (2002). Incorporating soft computing techniques into a

probabilistic intrusion detection system. IEEE Transactions on

Systems, Man, and Cybernetics, Part C (Applications and

Reviews), 32(2), 154-160.
Gong, X., Zhou, Y., Bi, Y., He, M., Sheng, S., Qiu, H., ... & Lu, J.

(2019, June). Estimating web attack detection via model

uncertainty from inaccurate annotation. In 2019 6th IEEE

International Conference on Cyber Security and Cloud
Computing (CSCloud)/2019 5th IEEE International

Conference on Edge Computing and Scalable Cloud

(EdgeCom) (pp. 53-58). IEEE.

https://pdf.zlibcdn.com/dtoken/a8e4f9aa33faa580677d87cbb2
fe7c2f/CSCloud/EdgeCom.2019.00019.pdf

Hu, Y., & Panda, B. (2004, March). A data mining approach for

database intrusion detection. In Proceedings of the 2004 ACM

symposium on Applied computing (pp. 711-716).
Kumar, P., & Pateriya, R. K. (2012, July). A survey on SQL injection

attacks, detection and prevention techniques. In 2012 Third

International Conference on Computing, Communication and

Networking Technologies (ICCCNT'12) (pp. 1-5). IEEE.
Lee, V. C., Stankovic, J. A., & Son, S. H. (2000, May). Intrusion

detection in real-time database systems via time signatures. In

Proceedings Sixth IEEE Real-Time Technology and

Applications Symposium. RTAS 2000 (pp. 124-133). IEEE.
Malik, M., & Patel, T. (2016). Database securityattacks and control

methods. International Journal of Information, 6(1/2), 175-

183. https://www.aircconline.com/ijist/V6N2/6216ijist18.pdf

Muslihi, M. T., & Alghazzawi, D. (2020, October). Detecting SQL
Injection On Web Application Using Deep Learning

Techniques: A Systematic Literature Review. In 2020 Third

International Conference on Vocational Education and

Electrical Engineering (ICVEE) (pp. 1-6). IEEE.
Shvachko, K., Kuang, H., Radia, S. y Chansler, R. (2010, mayo). El

sistema de archivos distribuido Hadoop. En 2010, vigésimo

sexto simposio de IEEE sobre sistemas y tecnologías de

almacenamiento masivo (MSST) (pp. 1-10). IEEE.
Teléfonica Company. (2015). Bases de datos y sus vulnerabilidades

más comunes. https://www.acens.com/wp-

content/images/2015/03/vulnerabilidades-bbdd-wp-acens.pdf

Varshney, K., & Ujjwal, R. L. (2019). LsSQLIDP: Literature survey
on SQL injection detection and prevention techniques. Journal

of Statistics and Management Systems, 22(2), 257-269

Wang, B., Ying, S., & Yang, Z. (2020). A Log-Based Anomaly

Detection Method with Efficient Neighbor Searching and
Automatic K Neighbor Selection. Scientific Programming,

2020. https://www.hindawi.com/journals/sp/2020/4365356

Cesar Añasco; Karen Morocho; María Hallo 28

Revista Politécnica, Mayo - Julio 2023, Vol. 51, No. 2

 BIOGRAPHY

Cesar, Añasco was born in Quito

- Ecuador in 1995. Graduated of

the Computer and Computer

Systems Engineering career

(2021) at the National Polytechnic

School. With professional

experience in the area of

Information Security. Research

interests: Data Analysis and Web

Development.

Karen, Morocho was born in

Quito - Ecuador on January 31,

1996. Graduate of the Systems

Engineering career at the National

Polytechnic School. She has

professional experience in the area

of ICTs and technological

solutions. Research interests: Web

development, Databases, Big Data.

PhD. María Hallo is a professor at

the Faculty of Systems

Engineering of the National

Polytechnic School, Quito-

Ecuador. MSc in Computer

Science Notre Dame de la Paix

University, Namur, Belgium. PhD

in Computer Science applications,

University of Alicante. Research

interests: Databases, Business

Intelligence, Semantic Web, Digital Libraries.

