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Abstract Resumen
This article explores the design and application of
machine learning techniques to enhance traditional
approaches for solving NP-hard optimization prob-
lems. Specifically, it focuses on the Last-Mile Routing
Research Challenge (LMRRC), supported by Amazon
and MIT, which sought innovative solutions for cargo
routing optimization. While the challenge provided
travel times and zone identifiers, the dependency on
these factors raises concerns about the algorithms’
generalizability to different contexts and regions with
standard delivery services registries. To address these
concerns, this study proposes personalized cost matri-
ces that incorporate both distance and time models,
along with the relationships between delivery stops.
Additionally, it presents an improved approach to
sequencing stops by combining exact and approxi-
mate algorithms, utilizing a customized regression
technique alongside fine-tuned metaheuristics and
heuristics refinements. The resulting methodology
achieves competitive scores on the LMRRC validation
dataset, which comprises routes from the USA. By
carefully delineating route characteristics, the study
enables the selection of specific technique combina-
tions for each route, considering its geometrical and
geographical attributes. Furthermore, the proposed
methodologies are successfully applied to real-case sce-
narios of last-mile deliveries in Montevideo (Uruguay),
demonstrating similar average scores and accuracy
on new testing routes. This research contributes to
the advancement of last-mile delivery optimization by
leveraging personalized cost matrices and algorithmic
refinements. The findings highlight the potential for
improving existing approaches and their adaptability
to diverse geographic contexts, paving the way for
more efficient and effective delivery services in the
future.

Este artículo explora el diseño y aplicación de técnicas
de aprendizaje automático para mejorar los enfoques
tradicionales y así resolver problemas de optimización
NP-hard. En particular, se enfoca en el Last-Mile
Routing Research Challenge (LMRRC), apoyado por
Amazon y MIT, que buscaba soluciones innovadoras
para la optimización de rutas de carga. Si bien el
desafío proporcionó tiempos de viaje e identificadores
de zona, la dependencia de estos factores plantea
preocupaciones sobre la generalización de los algorit-
mos a diferentes contextos y regiones con registros
de servicios de entrega estándar. Para abordar estas
interrogantes, este estudio propone matrices de costos
personalizadas que incorporan modelos de distancia y
tiempo, junto con las relaciones entre las paradas de
entrega. Además, presenta enfoques mejorados para la
secuenciación de paradas mediante la combinación de
algoritmos exactos y aproximados, utilizando técnicas
de regresión personalizada junto con metaheurísticas
y refinamientos heurísticos ajustados. La metodología
resultante logra puntajes competitivos en el conjunto
de datos de validación LMRRC, que usa rutas de
EE. UU. Al delinear cuidadosamente las caracterís-
ticas de la ruta, el estudio permite la selección de
combinaciones de técnicas específicas para cada ruta,
considerando sus atributos geométricos y geográficos.
Además, las metodologías propuestas se aplican con
éxito a escenarios de casos reales de entregas en Mon-
tevideo (Uruguay), demostrando puntajes promedio
y precisión similares en nuevas rutas de prueba. Esta
investigación contribuye al avance de la optimización
de la entrega de última milla al aprovechar matrices
de costos personalizadas y refinamientos algorítmicos.
Los hallazgos resaltan el potencial para mejorar los
enfoques existentes y su adaptabilidad a diversos con-
textos geográficos, allanando el camino para servicios
de entrega más eficientes y efectivos en el futuro.
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1. Introduction

The proper definition and sequencing of multiple stops
on cargo routes has a direct practical impact on the
transports’ efficacy, logistics and fuel consumption [1].
These factors encourage the search of time-efficient
and optimal solutions capable of performing accept-
ably under real and scalable use cases on every day and
ever-growing demands of deliveries [2]. This section
includes information with regard to the project genesis
over an Amazon’s and MIT’s recent contest and con-
tinues to define the main problems subdivided as both
supervised and unsupervised learning treated on this
document. Finally, once these topics are considered, a
consequent thematic flow is proposed, specifying basis
and original contributions of this work.

1.1. Amazon’s Last-Mile Routing Research
Challenge, supported by MIT

During the course of March to June 2021, the com-
petition known as LMRRC [3] took place, promoting
the participants to group and solve a terrestrial cargo
routing optimization problem with real routes data
from cities of USA with great demand of last-mile
deliveries (i.e. transportation from the initial deposit
or station to several dropoff sites), seeking innovative
original solutions for sequencing geographical nodes.
These data corresponded to stops, packages and travel
times information for each of the 6125 training and val-
idation routes whose segmentation was already defined.
There was a total of 1,457,175 packages and 898,415
stops, where several packages were linked to each stop,
which at the same time were associated to a zone iden-
tifier specific to the city. Each of these routes also had
an actual sequence with which to compare the results
according to an ’order-differential’ score that became
smaller the best the algorithms performed and later
generalized on testing set. The authors’ team, named
AlphaCentauri, classified as one of the top-performing
team of the competition.

1.2. Problem Statement

With focus on expanding the LMRRC initiative, the
global difficulties range from certain supervised learn-
ing aspects through prediction and routing algorithms
with objectives of reaching the best possible results
with respect to predefined solutions.

The current cargo routing problem requests to ap-
proximate a stops sequence solution diagrammed by
experienced drivers based on previous package trans-
ports and route state knowledge. All packages are
weightless but dimensioned, as well as the single trans-
port units per route, which may involve a necessity to
resupply at station. Also, some packages are subject
to fairly loose time windows that limit the packages

provisioning hours. Then, most stops are linked to
geographically distributed zones, with variable depen-
dencies 1:ni for packages and stops as well as stops and
zones. All possible travel times combinations between
stops are known in addition to their coordinates and
the planned service time needed for each package. The
problem is framed as a type of Asymmetric Travel-
ling Salesman Problem with no return or a weighted
Hamiltonian Path Problem with Time Windows and
Capacity constraints.

This article follows a logical disposition in order to
handle the full process of data preparation, structures
organization, algorithms experimentation and results
observation.

Figure 1 shows the global proposed thematic se-
quence. This article will primarily focus on the person-
alized cost matrices formulations and the adaptative
stops routing through extremely diverse routes while
examining main applications, limitations and errors of
the methodologies.

1.3. Literature Review

Large-scale logistics clustering and routing optimiza-
tion problems have been research topics since mid-20th
century, even before the terminology and practices for
unsupervised and supervised learning and contempo-
rary applications premiered. Documents such as [4]
sought using clustering among other techniques for
production scheduling and mobilization optimal esti-
mations, while [5] remains one of the first records of
large routing problem solution approximation. Gen-
eralities of recent investigations on these topics are
mentioned in this section, focusing on contents related
to the current research.

1.3.1. Research on Cargo Routing

The general case of cargo routing involves searching for
the optimal sequence of nodes (known as stops) on a set
of routes for a fleet of vehicles that must satisfy some
customer demands such as the roads’ state, the vehi-
cles’ load capacity, the travel times between each stop,
the processing times per package delivered, the time
windows when some package needs to be dispatched
and the drivers’ working hours. In the following sub-
sections, an overview of usual routing approaches is
undertaken and an exposition through examples of
recent routing investigation topics is presented.

1.3.2. Overview of Routing Approaches.

Certain cargo routing optimization are NP-hard prob-
lems [6] that involve ordering stops to fulfill constraints
for a physical unit carrying dimensioned and weighted
packages [7].
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Figure 1. Diagram of the document’s entire flow consisting of grouped and ordered inter-dependable blocks. Delineated
central block illustrates required validation over provided LMRRC’s datasets.

The initial problem formulation can vary, consider-
ing revisiting the starting stop and the use of single or
multiple transport units. Figure 2 illustrates typical
interrelated problems, including the NP-complete and
NP-hard Vehicle Routing Problem (VRP) [8], that
seeks minimum-length and minimum-time routes for a
fleet. The Quadratic Assignment Problem (QAP) [9],
assigns facilities to different locations to minimize dis-
tances multiplied by flows. The Travelling Salesman
Problem (TSP) [10], finds the shortest sequence vis-
iting each stop exactly once before returning to the

starting station. This problem has applications in logis-
tics, microchip manufacturing [11], and DNA sequenc-
ing [12]. The Hamiltonian Path Problem (HPP) [13],
a subproblem of TSP, searches for a global optimal
sequence without returning to the station, aiming for
a Hamiltonian-connected graph with unique paths be-
tween all vertices. Exhaustive search is not feasible due
to the number of different Hamiltonian cycles: (n−1)!

2
a complete undirected graph with n stops and (n − 1)!
in a complete directed graph.

Figure 2. Different standard types of cargo routing problems. Nodes are labelled using stop names.

1.3.3. Related Routing Applications.

Globally, the routing scenarios tend to seek innovative
and particular procedures through time-efficient algo-
rithms that facilitate the enterprise’s effort for provid-
ing effective service as well as reduce transportation’s
costs. This can be seen on documents such as [14], with
recent Quantum Computing approaches to VRP using
Quantum and Simulated Annealers. Similarly, possible

QAP resolutions are analyzed in [15–17], using QUBO
and Ising formulations. In any case, although problem-
specific in nature, the pursue for finding general use
routing optimization protocols for air, sea and land
transportation remains an active research area [18,19].

Regarding TSP, multiple approaches have been de-
veloped, including standard logic algorithms such as
greedy (e.g. nearest neighbour) and/or with dynamic
programming, as well as with constructive heuristics
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based approximations like multi-fragment [20] and dif-
ferent variable-opt techniques [21]. However, none of
these possibilities reaches a global solution in poly-
nomial time, and are deemed not applicable to the
current problem, given the extended amount of stops
in each route and their interrelationships.

With regards to the specific routing problem, the
MIT’s LMRRC Technical Proceedings illustrate the
proposals of several competitors that faced the chal-
lenge with a wide range of perspectives. Analyzing
the finalists’ documents and algorithms, CHH [22] sug-
gests doing local searches by travel time on which to
apply precedence, path and neighbor restrictions for
sequencing learned areas based on penalties. Then,
GMW [23] presents an untrained approach by zones
in three levels, together with a linear modification of
the travel times cost matrix and a later stage of post-
processing of the final sequence for possible sequence
inversion. Similarly, ArsAb [24] brings a greedy proce-
dure along with an already trained genetic algorithm
with a TSP subroutine also based on penalizations.
Finally, HSFv1 [25] puts forward a combination of
exact and heuristic approaches that conciliates multi-
ple possible perspectives and generalize appropriately
to the LMRRC’s testing dataset (thus improving the
resulting score with regards to validation routes).

1.3.4. Research on Multimethodologies

Multimethodologies for routing logistics have evolved
over time to address the complex challenges associ-
ated with optimizing transportation routes together
with improving e-commerce [26] and collaborative ap-
proaches [27] in order to improve efficiency as well as
reduce delivery costs. Related recent studies [28,29] sug-
gest diverse multistage hierarchical methods to solve

the vehicle routing problem for a heterogeneous fleet
with various constraints, and its unique feature is the
close proximity to real logistics practice. Other propos-
als [30, 31] help to reduce post-harvest wastage during
the collection process by using both internal and hired
fleets with heterogeneous capacities and employing
a Greedy algorithm-based heuristic and several local
search methods to obtain near-optimal solutions.

Apart from interesting simultaneous methodologies
for supply chain pickup and delivery for e-commerce
[32] when being trained with a great deal of routes [33],
there has been an increasing demand of efficient re-
alword mixed approaches due to the recent COVID
epidemic [34]. The provided experimental results enrich
the research related to vehicle routing problem models
and algorithms under major public health emergencies
and provide optimized relief distribution solutions for
decision-makers of emergency logistics [35]. Similar ar-
ticles [36] investigate a collaborative truck-drone rout-
ing problem for contactless parcel delivery in epidemic
areas, which combines the Metropolis acceptance cri-
terion [37] of Simulated Annealing and Tabu Search
for urban logistics in smart cities [38].

2. Materials and methods

2.1. Cost Matrices Formulation

Defining cost matrices is crucial for sequencing pro-
cedures, enabling problem structuring and resolution.
Even slight variations in these matrices can lead to
significant changes in results for routing optimization.
Figure 3 illustrates two approaches for defining cost
matrices, each with their own variations for parameter
combination and tuning.

Figure 3. Cost prospects analysis considering temporal and distance information.
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2.2. Temporal Information through Travel
Times

Time-related data used as cost matrix is useful for
abstract distance-independent approaches. The tradi-
tional parameter for general routing scenarios is using
an asymmetrical squared travel times matrix where
each element contains the value in seconds needed for
unidirectional movement from one stop to another. For
a given set of l stops, a general temporal matrix is
defined in Equation (1).

StaticTT =


0 tt1,2 ... tt1,l−1 tt1,l

tt2,1 0 ... tt2,l−1 tt2,l

...
... . . . ...

...
ttl−1,1 ttl−1,2 ... 0 ttl−1,l

ttl,1 ttl,2 ... ttl,l−1 0


(1)

∀tti,j ∈ R+ : stopi → stopj

This expression is known as the static travel times
matrix, where usual transport characteristics (e.g. ve-
hicle speed, acceleration) are considered.

A relevant alternative consists of the expected
travel times matrix (Equation (2)), where an indi-
vidual perturbation is associated to each element as
transit properties for a given time and date (e.g. traffic
jams, no signaling) are reported.

ExpectedTT (x, y) = ttx,y + ϵx,y (2)

∀ttx,y ∈ StaticTT : stopx → stopy

Thus, defining P as the set of packages associated
to a given route, the current time trace (Equation (3))
counted for a sequence interval i is calculated as the
sum of the starting route time with the planned service
time per package and the travel times duration up to
that point.

serviceT imei = plannedServicepi
, ∀p ∈ P (3a)

travelT imei = tta,b (3b)

∀tt ∈ TT : stepi = stopa → stopb

timei = time0 +
i∑

j=1
serviceT imej + travelT imej

(3c)
Time considerations are important for travel times,

including time windows, restrictions, and package-
specific constraints. Simpler approaches use a constant
vehicle speed, while more complex options consider
distributed speeds based on street configurations.

2.3. Spatial Information through Distances

Distance-based data wielded as cost matrix is advanta-
geous for geographical time-independent perspectives.
Similar to previous temporal case, the general instance
depicts a mainly asymmetric square matrix with dis-
tance values that unidirectionally links one stops with
another. Analogous to time-dependent expression, all
possible combinations are examined as in Equation
(4).

D =


0 d1,2 ... d1,l−1 d1,l

d2,1 0 ... d2,l−1 d2,l

...
... . . . ...

...
dl−1,1 dl−1,2 ... 0 dl−1,l

dl,1 dl,2 ... dl,l−1 0

 (4)

∀di,j ∈ R+ : stopi → stopj

The mentioned distance element is considered to be
indirect (i.e. Route distances, where street directions
and silhouettes are respected) or direct (e.g. Euclidean
or Manhattan distances, where street-related exami-
nations are not needed). Formulations regarding these
distances are:

di,j = {dR
i,j , d2

i,j , d∞
i,j)}, ∀d ∈ D where stopi → stopj

d(R)(x, y) = MapDirections(x, y) ⇒
(RouteD) ⊂ D with di,j = d(R)(i, j)

d(2)(x, y) =
√

(latx − laty)2 + (lngx − lngy)2 ⇒
(EuclideanD) ⊂ D, di,j = d(2)(i, j)

d∞)(x, y) = |latx − laty| + |lngx − lngy| ⇒
(ManhattanD) ⊂ D, di,j = d∞)(i, j)

Then, the current distance trace (Equation (5))
with respect to a sequence interval i is calculated as
the sum of all previous distances following the stops
ordering.

disti = da,b, ∀d ∈ D : stepi = stopa → stopb

distancei =
i∑

j=1
distj (5)

Contrasting with current time calculation, the cur-
rent distance expression is computationally easier to
manage and dependable of fewer parameters once the
spatial cost matrix is determined.
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2.4. Mixed Information through Matrix Com-
binations

Matrix variations in time and space costs offer a differ-
ent perspective on the problem, considering seemingly
independent attributes. However, it is necessary to ex-
amine and tune combinations of standard parameters
to achieve simplicity and generality.

The formulation of the mixed information matrix
CCM is expressed in Equation (6), considering tempo-
ral and spatial matrices. Empirical observations show
the similarity and redundancy of StaticTT and Expect-
edTT for last-mile trajectories. DirectTT is deemed too
general and imprecise, while the RouteD cost matrix
varies based on coordinates and local transportation
updates.

ccmi,j = ccmt
i,j + ccmd

i,j (6)

∀ccm ∈ CCM({λ(k)})

where ccmt
i,j = λ

(1)
i,j stt + λ

(2)
i,j ett + λ

(3)
i,j dtt

∀stt ∈ StaticTT, ∀ett ∈ ExpectedTT, ∀dtt ∈
DirectTT

and ccmd
i,j = λ

(4)
i,j rd + λ

(5)
i,j ed + λ

(6)
i,j md

∀rd ∈ RouteD, ∀ed ∈ EuclideanD, ∀md ∈
ManhattanD

2.5. Route Sequencing Algorithms

Route planning is vital for efficient transportation
sequencing, determining the order of stops to opti-
mize delivery. The LMRRC proposal considers vari-
ous factors, such as time-expanded variations, metric
and distance-based algorithms, and symmetric/asym-
metric alternatives [39]. To address the challenge of
multiple perspectives, a multi-approach method com-
bining learning, exact, and heuristics methodologies is
proposed.

Figure 4 depicts the procedural flow, including stop
sequence generation, attribute, and cost matrix deter-
mination. The global section analyzes route features,
employs regression for cluster ordering, and presents
exact/heuristics approaches for individual stops. Val-
idation results are compared using a variation score.
This sequencing challenge was central in the LMRRC
competition.

Figure 4. General routing sequencing flow treated in the section.

2.6. General Analysis

The proposed methodology adopts a systematic pro-
cess that incorporates regression, exact, and heuristic
approaches to provide a direct and comprehensive so-
lution. Regression approaches utilize specific learning
algorithms and past experimentation to make predic-
tions. However, relying solely on regression can lead to
predictions that are too dependent on the training data,
especially when considering multiple cities and con-
texts. Exact approaches aim to find precise solutions

for constrained problems but can be computationally
intensive for practical scenarios. Heuristic approaches,
on the other hand, offer approximate solutions within
reasonable time frames, albeit with reduced accuracy
and precision. The proposed procedure strategically
combines these approaches to maximize their utility.

Figure 5 illustrates the overall procedure that en-
compasses all the considered approaches, ensuring rel-
evant results within a realistic timeframe. This nonit-
erative nature of the methodology facilitates efficient
execution.
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Figure 5. General routing process including a learning phase as well as exact and heuristics approaches.

Additionally, to enhance the initial analysis and
facilitate comparison of final results, certain route
features of interest are studied as part of the charac-
teristics extraction step:

• Route Extension Ratio (RER): Spatial rela-
tion per route, considering its entire set of zones.

• Zone Extension Ratio (ZER): Spatial rela-
tion per zone, considering its entire set of stops.

• Zone Extension Variation (ZEV): Difference
between maximum and minimum spatial dimen-
sions of zones included in the route (averaging
in longitude and latitude).

• Stops Amount per Zone (SAZ): Quantity of
stops in a given zone from the data of a route.

• Stops Variation per Zone (SVZ): Difference
between the maximum and minimum number of
stops of the total set of zones belonging to the
route of interest.

• Zones Amount per Route (ZAR): Quantity
of zones in a given route.

The learning step estimates zone sequencing us-
ing LMRRC’s training data and the observation that
cluster order is generally preserved regardless of the
city, aiming to minimize Unicode variation between
contiguous stop groups. However, to account for cases
where learned cluster sequences are not faithfully con-
tinued in subsequent routes, exclusion conditionals are
defined. Global exact and heuristic perspectives with
specific parameters are then employed to complete
cluster ordering not covered by the learning step and
arrange remaining stops.

2.7. Learning Methodology

The presented regression seeks to find relationships
between contiguous stops clusters, based on the hypoth-
esis that previously learned zone sequence is mostly

maintained and reiterated on further routes. Clusters
are divided in four layers and identified with alphanu-
merical characters with an heterogeneous spatial dis-
tribution and dynamic silhouettes. This necessity for a
learning methodology is rooted on routes visualization
and examination of historical sequences, thus deter-
mining a correlation and dependency towards initially
independent stops orderings which stem from cluster-
ing definition and identification consistencies.

2.7.1. Empirical Motivation.

Observed stop sequences follow a pattern of visiting all
stops within a zone before proceeding, prioritizing con-
tiguous clusters and accounting for zone and package
structure. This suggests a layered approach, simpli-
fying routing with an average of 8 stops per cluster
and emphasizing accurate zone sequencing. Figure 6
illustrates this layered perspective, completing stops
within zones before advancing, regardless of proximity.
The learning approach focuses on major and minor
zones, aiming for simplicity and variable results, as
major layers remain stable within a route.

2.7.2. Algorithm for Cluster Ordering.

The training step of the regression algorithm builds
a model from a training dataset, counting the repeti-
tions of cluster sequences for major and minor zones
independently, grouped in sets of 7. Major and mi-
nor zones consist of alphabetic and numeric layers,
with the numeric layer being the most variable (e.g.,
’A-F’ and ’1-25’ character ranges). Relevant exclu-
sion conditions include unequal first layers for ma-
jor zones (i.e., dif(M (j)

1 , M
(j+1)
1 ) ≥ 1)), a difference

of 3 or more points in the first layer of minor zones
(i.e., dif(m(j)

1 , m
(j+1)
1 ) ≥ 3)), and a Unicode varia-

tion of 6 or more points across all zone layers (i.e.,∑
i dif(z(j)

i , z
(j+1)
i ≥ 6)). The model’s depth is shal-

lower for major zones but grows in specificity for minor
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zones. Considering consistent repeatability of identi-
fiers and an average of 21 clusters per route, the train-
ing algorithm has a complexity of O(m) for routes
with m zones and takes approximately 0.15 seconds
on a 2.3 GHz Quad-Core i7 processor.

In the evaluation step, zones are initially ordered
using the model sequences with the highest repetitions.

Unused clusters are then checked against sequences
with progressively lower repetitions and incorporated
into the initial ordering if found. If there are any re-
maining unused zones, they are ordered using exact
and approximate designs explained in the next section.
This process also has a complexity of O(m) and takes
around 0.4 seconds per route.

Figure 6. Layered approach to routing problem visualized through a route of California on Google Maps.

2.8. Exact and Approximate Approaches

In order to determine each cluster’ stops sequence as
well as to consider outliers and particularities from pre-
vious learning step, a set of rules exact and heuristics
possibilities are defined. The suggested approaches, re-
alized empirically through observation and parameter
determinations, seek to provide solutions with realistic
time complexities that approximate the given optimal
results.

2.8.1. Procedure Design.

The process of defining rules begins by understanding
the problem and classifying each input route based on
RER, ZER, SAZ, and ZAR characteristics. Relevant

attributes are then determined, forming a hierarchy
that mirrors the decisions made by actual sequences.
The defined approaches and configurations are tested
using a scheduling procedure with new routes. Finally,
the results obtained from these formulations and exe-
cutions are compared to optimize the output.

Figure 7 outlines the chronological guidelines for
defining and testing exact and heuristic parameters.
The scheduling involves three steps based on the at-
tributes hierarchies mentioned earlier. The capacity
approach has the least influence on the overall route
structuring, making variables such as package dimen-
sions auxiliary. The temporal approach, which involves
calculations based on the current time and time win-
dow specifications, is also considered secondary com-
pared to typical global route characteristics.

Figure 7. General design for exact and heuristics parameters’ process definition.
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2.8.2. Parameters Definition.

The following attributes are thus observed useful for
routing designation, focusing on empirically relevant
cases and approaches:

• Clusters Sequencing (CS): Order of zones
that remain unused from learning approach.

– Metric distance (CS1): Exact minimum
euclidean separation from contiguous zones’
baricenters determined as the geographical
middle point of each cluster polygon.

– Set distance (CS2): Heuristic mini-
mum Hausdorff interval between contiguous
zones.

• Stops Ordering (SO): Sequence of stops inside
a given cluster.

– Global approach (SO1): Exact reduced
or exhaustive search for global minimum
cost.

– Local approach (SO2): Heuristic search
for local minimum cost on contiguous stops.

• Transition Stop Definition (TSD): Determi-
nation of stops inbetween clusters.

– Last Inner Stop (TSD1): Last stop of
current cluster is first stop of following clus-
ter.

– First Outer Stop (TSD2): Local ap-
proach between clusters for first stop of
next cluster.

• Time Window Conditional (TWC): Stops
boost or delay in sequence based on time occur-
rence.

– Cluster perspective (TWC1): Order
modification based on exact time windows
per cluster.

– Route perspective (TWC2): Order
modification based on heuristic global time
windows.

• Capacity Limitations (CL): Necessity to re-
supply transport at deposit based on load excess.

– At cluster division (CL1): Resupply be-
fore entering following cluster if needed.

– Maximum saturation (CL2): Resupply
when the unit locally reached maximum
capacity.

The utilization of these tasks or parameters does
not rely on a training step as each scenario is eval-
uated directly through each route examination. The
mentioned cost matrix for this routing optimization
problem is defined as mostly time dependent as in
Equation (7).

CombinedCM = α1ExpectedTT + α2EuclideanD
(7)

where (α1, α2) = (0.9, 0.2)

The complexity needed for the evaluated cases us-
ing these approaches consists of O(n + m) per route
with n stops and m clusters, demanding for each route
an average of 0.22 seconds on a 2.3 GHz Quad-Core i7
processor.

3. Results and discussion

3.1. Sequencing Examination

This section analyzes the validation sequences using
qualitative and quantitative methods. LMRRC pro-
vides a score metric to observe the ordering results,
including Sequence Deviation (SD) and Edit Distance
with Real Penalty (ERPe and ERPnorm).

scoreLMRRC = SD(A, B) × ERPnorm(A, B)
ERPe(A, B)

where scoreLMRRC ∈ R+

The metric yields positive values, where lower
scores indicate better routing matching the optimal
sequence. A score between 0.8 and 1.2 represents a
uniformly random order, and the sequence must start
at a station without repetition. Scores below 0.1 are
considered competitive based on the LMRRC criteria.

3.2. Validation Results for Regression.

The regression-based zones ordering had an average
score variation of 0.06 between correct and incorrect
cluster sequencing. Major zones order accounted for
approximately 0.02 of the variation, while minor zones
order contributed to a 0.04 variation due to increased
variability.

The proposed segmentation of 7 clusters facilitated
the identification of coherent repetitions during the
training step, disregarding transition sequences be-
tween segments. However, this clustering error affected
less than 5% of observed scenarios, ensuring efficient
data management. The error arose from a maximum
repetition of 3 contiguous clusters per segment, result-
ing in a significant number of interleaving clusters.

Figure 8 presents example results and route se-
quences illustrating the aforementioned considerations.
The main cause of error during the evaluation step was
the secondary checks of model sequences with fewer
repetitions and cluster orders that had the same repeti-
tion quantity. An improvement could involve weighted
repetitions counts based on Unicode variations or ad-
ditional empirical observations.
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Figure 8. Results of approaches combinations on validation dataset, joined by sequencing layout of example routes
with actual and proposed routing.

3.3. Multimethodologies Considerations.

Utilizing metaheuristic, exact, and heuristic meth-
ods enhances the precision of the global stop rout-
ing system, especially when combined with the ini-
tial regression-based approach. Combinations of these
methods, as shown in Figure 9, adapt to different
route attributes. By modifying routing parameters,
the combinations exchange global and local analysis
functionalities, assessing their impact on validation
paths and identifying the most suitable permutations.

The combined exact and heuristic approaches yield
superior results for routes with higher RER and ZAR,
particularly in cities like Chicago, Los Angeles, and
Seattle. CS2 outperforms CS1 with a score variance of

0.013, as seen in Figure 9 and Table 1. SO1 achieves
the best mean score of approximately 0.006 for small
SAZ and larger ZER, while TSD1 generally outper-
forms TSD2. TWC and CL have minimal effects, but
TWC1 and CL2 yield slightly better results. CS1 and
SO1 are more suitable for low ZEVs and high SVRs,
while TSD2 and TWC1 also provide improvements
with minimal variation in the CL attribute.

Figure 9 illustrates the method combinations based
on route characteristics and their associated validation
scores. The dominant source of error is the CS analysis,
which significantly impacts results. Potential improve-
ments involve defining new parameters and exploring
additional variants within the proposed approaches.

Figure 9. Average results and distributions of particular combinations of exact and approximate stop routing techniques,
using characteristic route attributes.
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Table 1. Evaluation of average results of combinations of methodologies of interest using the validation routes in
different cities from USA provided by LMRRC.

Permutations Austin Boston Chicago Los Angeles Seattle Average Scores

Combination 1 0.0935 0.0930 0.0912 0.0905 0.0890 0.0914
Combination 2 0.0944 0.0941 0.0901 0.0883 0.0875 0.0909
Combination 3 0.0923 0.0914 0.0845 0.0836 0.0824 0.0868
Combination 4 0.0867 0.0884 0.0825 0.0817 0.0797 0.0838
Combination 5 0.0836 0.0861 0.0763 0.0792 0.0754 0.0801
Combination 6 0.0812 0.0794 0.0723 0.0665 0.0692 0.0737

3.4. Application to General Case

This section analyzes the testing results of the entire
process, including stop differentiations, zone predic-
tions, and customized routing mechanisms. The main
observations pertain to the custom cost functions and
adaptable routing techniques discussed in Sections 3
and 4. It concludes with observations on sequencing,
clustering applications, and generalizations to routes
outside of the United States. These route features
have varying effects when combined with optimization
algorithms derived from LMRRC competition.

3.5. Routes Characteristics

Obtained real datasets consists of 66 routes from the
country Uruguay located in the Southern Cone of
South America. Its cities are considerably smaller than
those LMRRC selected, which usually translates to
shorter distances and travel times between stops. They
also have a centralized and populous downtown where
businesses abound while bidirectional streets meager,
and a peripheral and extended uptown where most
markets and residential homes are localized. Given
that transports travel daily to both city sections, their
stations remain separated from about 20 kilometers of
the nearest urban stop. Moreover, its cities’ structures
are not uniformly diagrammed, laying globally an av-
erage of 85 metres per block and a maximum of 145
metres which also impacts considered costs. Finally,
the whole extension is fairly plain (i.e. with no stepped
mountain nor valley) and lacking of bridges, tunnels
or subways, which complicates long-distanced travel
times.

3.6. Optimization Algorithms Selection

The decision over four routing methodologies derives
from their LMRRC’s ranking, availability and vari-
ability, being all defined using Julia and Python pro-
gramming languages [40]. In particular, GMWis used
given its focus and baseline on zone identifiers and
its relationships. Then, ArsAb is selected due to its
original genetic training phase and greater results on
routes with more than 100 stops. Finally, the initial

HSFv1perspective, which declares a non-trained pro-
cedure as in GMWcase, provides better results with
extremes latitude over longitude route ratio.

These algorithms are all extracted from the MIT’s
LMRRC Technical Proceedings [41], discussed on
Section 1.3.3. Also, in addition to juxtapose results
over mentioned algorithms, the current proposition
HSFv2with a previous training phase and improved
evaluative approaches is compared, reaching satisfac-
tory and competitive results with more direct ap-
proaches that successfully determines and makes use
of the characteristics of each location. Indeed, the pro-
posed procedure empirically benefit from the diversity
of selected multimethodologies and the simplicity of
its combinations. Preceding stops and zones determi-
nation are used as preliminary steps for all algorithms.

3.7. Optimization Algorithms Results

The selected routes had square spatial extensions and
clustered stops with minimal intersections, aiding zone
identification and stop classification. Increased stops
per zone led to non-square spatial extensions, intro-
ducing higher complexity favoring local heuristics over
global approaches. Multiple nexus zones had distinct
identifiers in different route analyses, but tuned pa-
rameters remained useful for new routes with minimal
score variation.

Figure 10 shows a test route with concentrated
stops in downtown areas and scattered stops elsewhere,
with zone prediction not prioritizing cluster character-
istics.

Table 2 displays quantitative results for the four
routing algorithms. GMW consistently achieved better
metrics with lower variance as the number of stops
increased. ArsAb performed similarly for routes with
many stops. HSFv2 improved over HSFv1, especially
for intermediate route lengths. Zone sequencing was
the main source of error, as learning was based on
non-local training routes.

The proposed algorithms perform and escalates
adequately in terms of time and spatial complexity
when applied to last-mile routes with lengths of at
most 155 stops on a 2.3 GHz Quad-Core i7 proces-
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sor, with comparable and lower complexities than the
aforementioned competition algorithms. This is con-
sidered acceptable, given the demands considerations
of current real-world last-mile routes.

The selected procedures also remain flexible to fur-
ther customization by modifying the cost matrices
parameters as well as by enabling a different combi-
nation of sequencing attributes, aiming at supporting

multiple transportation modes and constraints. In-
deed, filtering sequencing attributes, particularly CS
considerations, allow for more operative resource avail-
ability which translates to faster processing times and
a greater scalability of the sequencing process.

Despite additional error sources from customized
stops and zone predictions, the scores generally out-
performed LMRRC’s sequences with similar averages.

Figure 10. Visualization over key flow steps using an example testing route of Montevideo (Uruguay).

Table 2. Applied algorithms result scores on testing routes, displayed with format (Min, Average, Max).

Route length GMW [e-04] ArsAb [e-04] HSFv1 [e-04] HSFv2 [e-04]

< 50 stops (279, 494, 656) (298, 536, 731) (432, 1077, 2322) (387, 839, 1098)
50-79 stops (263,482,647) (286, 525, 758) (428, 1066, 2291) (368, 790,1077)
80-100 stops (255, 474, 632) (283, 522, 783) (425, 1059, 2267) (352, 769, 1052)
> 100 stops (237, 461, 625) (251, 507, 793) (391, 1045, 2254) (324, 721, 1042)

4. Conclusions

This section summarizes and describes the main ac-
complishments of this project with focus on processes
generalization, including observations on future related
research possibilities and considerations aimed at cor-
roborating and improving obtained results.

4.1. Global Summary

To summarize, this document provides a review of
important project components, followed by key prin-
ciples and methodologies employed. Limitations and
sources of error related to the problems of interest are
also discussed. The proposed methodology expands the
LMRRC contest initiative by sequencing and planning
geographically diverse routes using raw GPS records
and datasets from the US and Uruguay. The process
includes record filtering, prediction of new stop groups,
and a combination of regression, exact, and heuristic
approaches for routing. Applying this procedure to the
provided data yields competitive scores in validation
routes (US) and demonstrates acceptable adaptation

and generalization in test routes (Uruguay) from both
LMRRC and OTUC.

4.1.1. Relevant Limitations

The designs and applications of problem models in
transport logistics aim to achieve efficient objectives.
However, there are practical limitations that hinder
their adaptability:

• Limited availability of routes and real routes
from specific cities at an international level, pro-
vided by official entities, restricts the ability to
conduct extensive and comprehensive studies on
various structural possibilities.

• Fixed precision of coordinate and numerical data
from GPS for waypoint detection, as well as nu-
merical values related to temporal and spatial
attributes for cost matrix formulations, impose
constraints on the accuracy of the models.

• Customized cost matrices can be complex to
create and maintain, especially for large and
complex routing problems.
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• Euclidean distance is not scaling invariant, mean-
ing that multiplying the data by a common fac-
tor will change the distance. Manhattan distance
does not take into account the curvature of the
Earth, which can lead to inaccurate distance
calculations for long distances.

• Expected travel time can be difficult to estimate
accurately, especially in dynamic traffic condi-
tions.

• Finite number of proposed combinations of ex-
act and heuristic approaches for stop sequencing
balances the need for precise results while avoid-
ing overfitting the global model for additional
traversal cases.

Considering limitations helps analyze the proposal,
suggest improvements, and guide future works.

4.1.2. Main Error Sources

The main errors identified in the proposal’s global
procedure are as follows:

• Loss of sequences of zones of interest in the re-
gression model due to the grouping of 7 zones and
limited repetition of zones across routes within
the same city.

• The accuracy of a customized cost matrix de-
pends on the quality of the data used to create
it. If the data is inaccurate or incomplete, then
the cost matrix will not be accurate.

• Increased variance of temporal information in
comparison to relatively static distance measure-
ments.

• In contrast to time measurements, different dis-
tances may be measured in different units (e.g.,
miles and kilometers) depending on the source.

• High variability of path attributes, posing chal-
lenges in determining combinations of meta-
heuristic and heuristic approaches while main-
taining a balance between performance and score
differences.

These errors significantly impact the final results
and hinder achieving optimal resolutions. However,
despite these limitations, the project still meets the
satisfactory accuracy target within its scope.

4.2. Future Research Possibilities

Logistics and optimization techniques are constantly
evolving with technology, aiming to provide better ser-
vices. This project can be expanded within the same

research area and complementary themes to offer orig-
inal contributions for complex issues in academic and
commercial environments.

Future possibilities include extending the proposed
algorithms to similar contexts and sharing tools with
relevant entities. Emphasis would be placed on dissem-
inating and increasing the project’s visibility, ensuring
functional compatibility with applications and devel-
oping user-friendly software.

Another possibility is exploring the cargo routing
problem using quantum perspectives, such as adiabatic
annealers, variational methods, and quantum learning.
These approaches address combinatorial complexity
and utilize quantum computing’s potential for massive
data management, analysis, and processing. They align
with the growing demand for optimization in transport
logistics and attract scientists and engineers worldwide
to collaborate on routing optimization strategies.
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