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Abstract Resumen
This paper presents new algorithm based on deep
learning for daytime and nighttime pedestrian detec-
tion, named multispectral, focused on vehicular safety
applications. The proposal is based on YOLO-v5, and
consists of the construction of two subnetworks that
focus on working with color (RGB) and thermal (IR)
images, respectively. Then the information is merged,
through a merging subnetwork that integrates RGB
and IR networks to obtain a pedestrian detector.
Experiments aimed at verifying the quality of the
proposal were conducted using several public pedes-
trian databases for detecting pedestrians at daytime
and nighttime. The main results according to the
mAP metric, setting an IoU of 0.5 were: 96.6 % on
the INRIA database, 89.2 % on CVC09, 90.5 % on
LSIFIR, 56 % on FLIR-ADAS, 79.8 % on CVC14,
72.3 % on Nightowls and 53.3 % on KAIST.

En este artículo se presenta un nuevo algoritmo
basado en aprendizaje profundo para la detección
de peatones en el día y en la noche, denominada
multiespectral, enfocado en aplicaciones de seguri-
dad vehicular. La propuesta se basa en YOLO-v5,
y consiste en la construcción de dos subredes que
se enfocan en trabajar sobre las imágenes en color
(RGB) y térmicas (IR), respectivamente. Luego se
fusiona la información, a través, de una subred de
fusión que integra las redes RGB e IR, para llegar
a un detector de peatones. Los experimentos, desti-
nados a verificar la calidad de la propuesta, fueron
desarrollados usando distintas bases de datos públicas
de peatones destinadas a su detección en el día y en
la noche. Los principales resultados en función de la
métrica mAP, estableciendo un IoU en 0.5 son 96.6 %
sobre la base de datos INRIA, 89.2 % sobre CVC09,
90.5 % en LSIFIR, 56 % sobre FLIR-ADAS, 79.8 %
para CVC14, 72.3 % sobre Nightowls y KAIST un
53.3 %.
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1. Introduction

At present, car accidents are a public health problem
worldwide, since they cause a high number of victims
and injured, medical treatment costs, rehabilitation,
psychological disorders, personal and property insur-
ance, they consume resources that might be aimed
at other health areas [1], where pedestrians are ex-
posed to a high accident rate, reaching up to 22 %
of the cases [2]. Many of these misfortunes may be
prevented, because they are generated by the risky,
negligent and irresponsible action of drivers and/or
the pedestrians themselves [3]. In the case of Ecuador,
run overs represent more than 10 % of the deaths due
to car accidents.

In this scenario, pedestrian detection systems
(PDS) are one of the most important technological
components to prevent possible dangerous situations
and reduce run overs. Therefore, pedestrian detection
is an active and interesting research topic, due to the
challenges that must be overcome when working in
uncontrolled environments and with limited sensors in
the perception of the road scene.

In the case of atmospheric conditions, excessive sun,
rains, or mist change lighting conditions, and to make
matters worse, the night magnifies these risk factors
due to the absence of natural light [4–6]. With respect
to pedestrians, they use different types of clothes, in
different colors, change the body posture and may
be at any position of the road scene. Regarding the
information captured by the camera, it is generally
incomplete due to the reduced field of vision of the sen-
sor, the distance that separates the pedestrian from the
camera reduces the resolution of the captured image.
The movement and vibration of the vehicle generate
distortion of the image. In addition, the geometry of
the road has direct influence on the quality of the
information captured by the camera [5], [7].

Fortunately, at present there are public databases
specialized in pedestrian detection, at daytime or night-
time, together or separate, in the context of intelligent
and autonomous vehicles, which may be used for the
experimental part [8–10].

Thus, the main objective of this work is the imple-
mentation of a new deep learning (DL) architecture
based on YOLO-v5 [4], [11–15], to obtain a cutting-
edge system specialized in pedestrian detection at
nighttime and/or daytime, using visual information in
the range of visible and infrared light, that generates
results comparable to the existing ones in the state of
the art.

The content of this document is organized as fol-
lows: section 2 presents the state of the art in the
field of the PDS using DL techniques. Afterwards,
section 3 describes the architecture of the detection
system based on YOLO-v5 for classification/detec-
tion of pedestrians at nighttime and/or daytime. The

following section shows the results of the experimen-
tal evaluation, conducted on various public databases
aimed at the implementation of PDS, at daytime or
nighttime. Finally, the last part is devoted to the con-
clusions and future works.

1.1. State of the art

At present, DL architectures are being widely used in
the construction of PDS, whose objective is the detec-
tion of pedestrians in real driving scenarios [4], [6], [12],
[15], [16]. For this purpose, cameras in the range of vis-
ible light (RGB images) and infrared (IR images) have
been used, to capture visual information at daytime
or nighttime, far or close, together or separate.

Thus, Kim et al. [17] used CNNs on night im-
ages captured with a visible spectrum camera. The
experiments were conducted on the KAIST [18] and
CVC-14 [10] databases.

Ding et al. [19] put into operation a CNN archi-
tecture based on two R-FCN subnetworks, one for
color images and another for thermal images. Large
subnetworks, thermal and color, were merged in the
middle of the architecture; it was done similarly for
small subnetworks. To obtain separate detections for
pedestrians of large and small scale, the NMS (non-
maximum suppression) algorithm is used at the end
of the network to merge the results of the two subnet-
works and obtain a robust detection. By merging the
two channels, the error rate versus FPPI is reduced
from 40 %, obtained with separate channels, to 34 %.
In addition, the percentage of losses with R-FCN is
69 %, whereas with Faster-RCNN is 51 %.

Köing et al. [5] have installed an RPN network for
detecting persons in the visible and infrared spectra;
then, they have used the Boosted Decision Tree tech-
nique to merge the information, obtaining an error
rate of 29.83 % on the KAIST database [18].

Zhang et al. [16] combined RPN and Boosted For-
est for detecting pedestrians on the Caltech [20], IN-
RIA [21], ETHZ and KITTI [22] databases; they used
bootstrap techniques to improve the training, reaching
an error rate of 9.6 %; the algorithm has a processing
time of 0.6 seconds per frame. In addition, they proved
that Faster R-CNN does not work properly, because
the feature maps do not have enough information to
detect pedestrians at a great distance, which results
in a drawback to be overcome.

Zhang et al. [15] developed a Faster R-CNN archi-
tecture in the visible and infrared spectra. The experi-
mental results were obtained on the Caltech database
20, and in nighttime situations on an own database,
obtaining an error rate of 19 % and 24 %, respectively,
with a processing time of 103 milliseconds (9.7 fps) on
640 × 480 pixels images.

Liu et al. [4] used a Faster-RCNN architecture
for detecting pedestrians in the visible and infrared
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spectra, with an error rate of 37 % on the KAIST
database [18].

Song et al. [11] proposed a hybrid network based
on Yolo-v3 called MSFFN (multispectral feature fu-
sion network), which consists of a DarkNet-53 struc-
ture and two subnetworks, MFEV and MFEI for color
and infrared images, respectively. The feature maps of
MFEV are divided in three scales of (13 × 13), (26 ×
26) and (52 × 52), and analogously for MFEI, and then
merged in the final part of the architecture. MSFFN
achieves a mAP of 85.4 % compared to the 84.9 %
of Faster-RCNN on KAIST [18], another remarkable
aspect is the 56 fps of MSFFN, compared to the 28
fps of Faster-RCNN.

Cao et al. [8] presented improvements in the param-
eters for the detection in YOLO-v3, modifying the size
of the grid to (10 × 10), applying Soft-NMS instead
of NMS, with a superposition threshold of 0.2 and,
finally, adding a new feature map of (104 × 104). The
experiments were conducted on INRIA [21], obtaining
a precision of 93.74 % and a recall of 88.14 %, with a
processing speed of 9.6 milliseconds per frame.

Yu et al. [23] modified the Faster R-CNN, concate-
nating three different levels of VGG16 with the ROIs,
which is then normalized, scaled and dimensioned. A
miss-rate (MR) of 10.31 % was obtained on the INRIA
database [21] with these changes.

Zhou et al. [24] proposed a system to improve
the performance in the detection with occlusion with
their MSFMN (Mutual-Supervised Feature Modula-
tion Network), constituted by two branches super-
vised by annotations of entire body and visible parts,
that generates training examples which are better fo-
cused. In addition, it is calculated the similarity in
the losses between the boxes corresponding to entire
body and visible parts, enabling learning more robust
features, mainly for occluded pedestrians. The merge
is performed at the end, multiplying the two classifica-
tion scores. The experiments were conducted on the
CityPersons database [24], obtaining a 38.45 % for a
strong occlusion.

On the other hand, Tesema et al. [25] put into
operation a hybrid architecture that receives the name
of HCD (SDS-RPN), with a Log-average Miss Rate of
8.62 % on Caltech [20]. On the other hand, Kyrkou [26]
presented the YOLOPED system which is based on
the DenseNet architecture. Instead of FPN, each reso-
lution is resized to the size of the deepest feature map
in the column, enabling to combine them through a
concatenation which is used in header detection. At
last, a new loss function is implemented, combining
the features of YoloV2 [27], SSD [28] and lapNet [29].

An evaluation in PETS2009 yielded a precision of
85.7 %, a miss rate of 12 %, with a processing of 33.3
fps. Wolpert et al. [12] have proposed to combine RGB
and thermal images, using Faster R-CNN without an-
chor boxes, adapting the CSPNet [12] architecture to

merge the IR images at the end of the architecture,
reaching an MS average of 7.40 % on KAIST [18].
Zhou et al. [30] have presented the MBNet (Modal-
ity Balance Network), based on SSD with a DMAF
(Differential Modality Aware Fusion) module, which
merges and complements the information between the
RGB and thermal features. The IAFA (Illumination
Aware Feature Alignment) detection handles the equi-
librium between the two detection modalities, and the
performance achieves miss rates of 21.1 % and 8.13 %
on CVC-14 [10] and KAIST [18], respectively.

Wang [31] uses an architecture called CSP, consti-
tuted by a feature extraction part based on Resnet-101
and a detection stage, which in turn is used to predict
the center, scalar and offset. They use Batch Normal-
ization (BN) to accelerate the training process and
improve the performance of the CNNs. A most recent
technique is Switch Normalization (SN), which uses a
weighted average of the statistical mean and variance
of the normalization by blocks. It was proved that us-
ing BN for the CSP model an MR (miss rate) of 11.29
% was obtained, whereas SN yields a MR of 10.91 %
on the CityPersons database.

Appropriate scaling of images helps to reduce the
computational load and to eliminate noise, using CSP
with SN and an input of (1024 × 2048) yields an MR of
11.41 %, whereas an MR of 10.80 % is achieved with an
input of (640 × 1280). Shopovska et al. [32] presented
an architecture similar to the generative adversarial
networks (GAN). This network has two inputs, an
RGB and a thermal, giving as output an image that
maintains the pedestrians with good visibility, whereas
the information obtained from the thermal images en-
hances the color of pedestrians with bad visibility. This
image is used as the input to a Faster RCNN VGG16
network, yielding MRs of 52.07 % and 43.25 %, for
daytime and nighttime images, respectively, in the
KAIST database [18], and MRs of 69.14 % and 63.52
% for daytime and nighttime images, respectively, in
the CVC-14 database [10].

2. Materials and methods

Figure 1 shows the general scheme of the proposed
multispectral system for pedestrian detection. The sys-
tem takes visual information coming from color or
thermal images, to feed two subnetworks, named RGB
and IR, respectively. Then, the merging network con-
catenates the outputs to locate pedestrians at daytime
or nighttime, jointly or separately. The subnetworks
are constituted by an architecture based on YOLO-v5
(You Only Look Once) [11], [26], [33–35].
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Figure 1. General scheme of the multispectral system
based on YOLO-v5, for pedestrian detection on color and
thermal images

2.1. Description of the YOLO-v5 architecture

YOLO is an acronym for «You Only Look Once» [11],
[27], [33–35]. It is a very popular model with high-
performance in the field of object detection, being
considered a cutting-edge technology in real-time de-
tection (FPS). YOLO-v5 is the fifth generation of
one-stage detectors [36]. Yolo-v5 is implemented in Py-
torch. Table 1 shows the composition of the customized
layers that describe the architecture, according to the
base layers of Pytorch.

In Table 1, SF is an acronym for Scale Factor; on
the other hand, the symbol #s represents variable
parameters which are handled according to the val-
ues established in the column of parameters in Table
2, which mainly define the size of the Kernel Stride,
Padding and Channels.

Finally, the symbol – represents that it receives no
parameter.

Figure 2 shows the YOLO-v5 architecture, consti-
tuted by subnetworks IR and RGB, with the layers
mentioned in Table 1.

Table 1. Composition of the customized layers imple-
mented in YOLO-v5 [36]

Name Composition Parameters
Kernel Stride Channels

Conv
conv2d # # #

BatchNom2d - - -
Hardwish - - -

Focus
Conv 3 x 3 1 32
concat - - -

BottleNeckCSP

Conv 3 x 3 1 #
Conv 3 x 3 1 #
Conv 3 x 3 1 #

conv2d 3 x 3 1 #
conv2d 3 x 3 1 #
concat - - -

BatchNom2d - - -
LeakyRelu - - -

Conv 3 x 3 1 #

SPP

Conv 3 x 3 1 512
- Kernel Stride Padding

Maxpool2d 5 x 5 1 2
Maxpool2d 9 x 9 1 4
Maxpool2d 13 x 13 1 6

concat - - -
Conv 3 x 3 1 512

Upsample nn.Upsample Size SF Mode
none 2 nearest

2.2. Proposed architecture

The proposed architecture is focused on creating a
system capable of merging two subnetworks that work
with RGB and IR images, respectively. The merging
network concatenates layers 17 and 40 (small pedes-
trians), and layers 20 and 43 (large pedestrians), de-
scribed in Table 2, to locate pedestrians at daytime or
nighttime, jointly or separately.

Table 2 shows the specific layers that constitute
each of the subnetworks; each layer has an identifier
(id), which is used in origin to identify the layers to
which they are connected. The origin –1 indicates that
it is a connection to the previous layer; the number in-
dicates the number of times that the layer is repeated,
and finally, the arguments received by each layer are
indicated in parameters.

The layers that contain the feature maps of the
RGB and IR networks are concatenated, to merge
the information through a BottleneckCSP layer. This
combined information is sent to the detection layer to
generate bounding boxes and the class prediction.
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Table 2. Distribution and connections of the subnetworks that constitute the architecture of the system based on
YOLO-v5 [36], for detecting pedestrians at daytime and nighttime

Network Id Origin Number Module Paremeters

RGB

0 –1 1 Focus [32,3]
1 –1 1 Conv [64,3,2]
2 –1 3 BottleneckCSP [64]
3 –1 1 Conv [128,3,2]
4 –1 9 BottleneckCSP [128]
5 –1 1 Conv [256,3,2]
6 –1 9 BottleneckCSP [256]
7 –1 1 Conv [512,3,2]
8 –1 1 SPP [512,[5,9,13]]
9 –1 3 BottleneckCSP [512,False]
10 –1 1 Conv [1]
11 –1 1 Upsample [256,False]
12 [–1,6] 1 concat [1]
13 –1 3 BottleneckCSP [256,False]
14 –1 1 Conv [128,1,1]
15 –1 1 Upsample [None,2,Nearest]
16 [–1,4] 1 concat [1]
17 –1 3 BottleneckCSP [128,False]
18 –1 1 Conv [128,3,2]
19 [–1,14] 1 concat [1]
20 –1 3 BottleneckCSP [256,False]
21 –1 1 Conv [256,3,2]
22 [–1,10] 1 concat [1]
23 –1 3 BottleneckCSP [512,False]

IR

24 0 1 Conv [64,3,2]
25 –1 3 BottleneckCSP [64]
26 –1 1 Conv [128,3,2]
27 –1 9 BottleneckCSP [128]
28 –1 1 Conv [256,3,2]
29 –1 9 BottleneckCSP [256]
30 –1 1 Conv [512,3,2]
31 –1 1 SPP [512,[5,9,13]]
32 –1 3 BottleneckCSP [512,False]
33 –1 1 Conv [1]
34 –1 1 Upsample [256,False]
35 [–1,29] 1 concat [1]
36 –1 3 BottleneckCSP [256,False]
37 –1 1 Conv [128,1,1]
38 –1 1 Upsample [None,2,Nearest]
39 [–1,27] 1 concat [1]
40 –1 3 BottleneckCSP [128,False]
41 –1 1 Conv [128,3,2]
42 [–1,37] 1 concat [1]
43 –1 3 BottleneckCSP [256,False]
44 –1 1 Conv [256,3,2]
45 [–1,33] 1 concat [1]
46 –1 3 BottleneckCSP [512,False]

Fusión

47 [17,40] 1 concat [1]
48 –1 3 BottleneckCSP [128,False]
49 [20,43] 1 concat [1]
50 –1 3 BottleneckCSP [256,False]
51 [23,46] 1 concat [1]
52 –1 3 BottleneckCSP [512,False]

Detect 53 [48,50,52] 3 Detect [1, anchors]
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Figure 2. Graphical representation of the YOLO-v5 architecture

3. Results and discussion

Multiple experiments have been conducted to get the
proposed model, using reference databases in the state
of the art, and standard evaluation metrics used in
object detection.

3.1. Description of the databases

The public pedestrian databases in the visible and in-
frared spectra are INRIA [21], CVC 09 [9], CVC-14 [10],
LSI Far Infrared Pedestrian Dataset (LSIFIR) [37],
FLIR-ADAS [38], Nightowls [39] and KAIST [18].

These databases were selected because they are spe-
cialized in daytime and nighttime vehicle applications,
and include labeling of the true region, Bgt, where
pedestrians are effectively located.

• INRIA [21]. The INRIA public database is one
of the most widely used in pedestrian detection.
It has a set of images divided in «train» and
«test»; the «train» folder contains 614 images for
training, whereas the «test» folder includes 288
images for testing. Table 3 shows the content.

Table 3. Content of the INRIA database

Detection
Train 614(614)a

Test 288(288)

.a The value in parenthesis represents the number
of frames that contain pedestrians.

• CVC-09 [9]. These are the databases most
widely used for detecting pedestrians at night-
time and daytime, respectively. In this case it
was used for training, and afterwards for valida-
tion. Table 4 describes the train and test sets.
This database is labeled with the pedestrians
present in the scene, Bgt.

Table 4. Content of the CVC-09 database at nighttime

Positive Negative
Train 2200 1002
Test 2284 -

• LSIFIR [37]. It is another important database
for developing algorithms for pedestrian detec-
tion at nighttime. Table 5 describes the train
and test sets, with their corresponding sizes. As
it was the case for the CVC-09, this database
was used for the training, validation and testing
of the proposal.

Table 5. Content of the LSI FIR database

Classification Detection
Train 43 391(10 209)a 2936(3225)
Test 22 051(5945) 5788(3279)

.a The value in parenthesis represents the number
of frames that contain pedestrians.
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• FLIR-ADAS [38]. This database includes ther-
mal images for developing autonomous driving
systems. The objective of these images is to help
in the development of safer systems, which com-
bined with color images and information from
LIDAR sensors, may enable creating a robust
system for pedestrian detection. It has 8862 im-
ages for training and 5838 for testing, see Table
6.

Table 6. Content of the FLIR-ADAS database

Detection
Train 8862(5838)a

Test 1366(1206)

.a The value in parenthesis represents the number
of frames that contain pedestrians.

• CVC-14 [10]. It is constituted by two sequences
of thermal images taken at daytime and night-
time. It includes more than 6000 images for train-
ing and 700 for validation.

• Nightowls [39]. It is focused on the detection
of pedestrians at nighttime. The images were
captured using a standard camera, with a 1024
× 640 resolution. The sequences were captured
in three countries, under all weather conditions
and at all seasons, to obtain a greater variability
in the scenes.

• KAIST [18]. Multispectral database that con-
tains a set of 640 × 480 images, taken by two
cameras, one thermal and one color with a fre-
quency of 20 Hz. They were taken at daytime
and nighttime to consider different lighting con-
ditions. The number of thermal and color images
is the same, for a total of 100,368 images for
training and 90,280 for testing, see Table 7.

Table 7. Content of the KAIST database

Detection
Color Thermal

Trains 50 184(#)a 50 184(#)
Test 45 140(#) 45 184(#)

.a The value in parenthesis represents the number
of frames that contain pedestrians.

3.2. Evaluation metrics

The following protocols will be followed for the evalua-
tion:

• P-R Curve (Precision-Recall). Precision (Prec) is
the ratio between relevant cases and cases recov-
ered. Recall (Rec) is the ratio between relevant
cases that have been recovered and total of rele-
vant cases. The equations for these cases are the
following:

Pres = TP

TP + FP
(1)

Rec = TP

TP + FN
(2)

• AP (Average Precision). This index was proposed
for the VOC2007 challenge [40] to evaluate the
performance of detectors, and is related to the
area under the P-R curve of one class. The mAP
is an average of the APs for all classes.

To estimate the metrics, it is required an index
that enables identifying a correct prediction, which
in this case is the IoU (Intersection-over-Union). IoU
determines the ratio between the regions that corre-
spond to true positives (TP) and false positives (FP),
by means of (3).

IoU = Area(Bdet ∩ Bgt

Area(Bdet ∪ Bgt
(3)

Where Bgt is the true ROI and Bdet is the detected
ROI. In this case, a TP occurs for an IoU greater than
0.5; otherwise, it is an FP. Equations (1) and (2) may
be evaluated with these values.

3.3. Implementation details

The proposed architecture is constituted by four main
parts, which are the IR and RGB subnetworks, the
feature merging block and the detection block. The
training of the architecture will consist of a training
stage of strong adjustment, and a training stage of fine
adjustment. The SGD (stochastic gradient descent) op-
timization algorithm with a learning rate (LR) of 0.01
is used for the training of strong adjustment, fixing
100 epochs for training the whole architecture with the
RGB images; the SGD technique prevents being stuck
in a relative minimum of the objective function. Then,
the weights corresponding to the RGB subnetwork
are frozen, and 100 epochs are fixed for training the
architecture with the IR images.

At last, to conclude the strong adjustment stage,
the weights corresponding to the IR and RGB sub-
networks will be frozen, and the merge layers will be
trained for 50 epochs with the IR and RGB images
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combined in equal parts, to prevent the merge layers
from being biased by the features of the IR or RGB
images.

In the fine adjustment stage the LR is modified to
0.0001, all weights of the architecture are frozen except
the ones corresponding to the RGB subnetwork and
the training is performed for 50 epochs with the RGB
images; then, all the weights are frozen except the ones
of the IR subnetwork, and the training is carried out
for 50 epochs with the IR images. In the last step all
the weights are frozen except the ones of the merge
layer, and a training is performed for 25 epochs with
the IR and RGB images in equal parts.

At this time, this procedure was applied to each of

the databases listed in this work

3.4. Results

Table 8 presents the performance of the detection
method, when it is evaluated with various metrics on
the selected databases.

In all cases, the processing time was 29.8 millisec-
onds.

Figure 3 displays plots of the P-R curves for the
proposed architecture on each of the selected databases.
It may be concluded from Table 8 and Figure 3 that
the best performance was obtained on INRIA [21],
followed by CVC09 [9] and LSIFIR [37].

Figure 3. Plots of the P-R curves for the different pedestrian databases

Table 8. Evaluation of the Yolo-v5 [36] architecture on various public databases on the visible and infrared spectra.
LAMS is an acronym for Log Average Miss Rate

INRIA CVC09 LSIFIR FLIR-ADAS CVC14 Nightowls KAIST
mAP@50 96.6 89.2 90.5 56 79.8 72.3 53.3
Precisión 69.8 67.4 89.2 72.1 86.4 80.7 52.5

Recall 90 89 83.4 40.1 61.6 64.6 53.7
LAMS 6 20 17 69 36 36 67

4. Conclusions

This work has presented a system for detecting pedes-
trians at daytime and nighttime using modern image
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processing techniques and deep learning, where a new
DL architecture based on YOLO-v5 was developed
with DenseNet, for detecting pedestrians at daytime
and nighttime using images in the visible and far in-
frared spectra, whose mAP is 96.6 % for the case of
INRIA, 89.2 % on CVC09, 90.5 % on LSIFIR, 56 % on
FLIR-ADAS, 79.8 % for CVC14, 72.3 % on Nightowls
and 53.3 % for KAIST.

Future work will be aimed at improving the pro-
posed architecture and testing it on the most relevant
databases in this field of knowledge.
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